eLife最新文献

筛选
英文 中文
Spatial localization of hippocampal replay requires dopamine signaling.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-24 DOI: 10.7554/eLife.99678
Matthew R Kleinman, David J Foster
{"title":"Spatial localization of hippocampal replay requires dopamine signaling.","authors":"Matthew R Kleinman, David J Foster","doi":"10.7554/eLife.99678","DOIUrl":"10.7554/eLife.99678","url":null,"abstract":"<p><p>Sequenced reactivations of hippocampal neurons called replays, concomitant with sharp-wave ripples in the local field potential, are critical for the consolidation of episodic memory, but whether replays depend on the brain's reward or novelty signals is unknown. Here, we combined chemogenetic silencing of dopamine neurons in ventral tegmental area (VTA) and simultaneous electrophysiological recordings in dorsal hippocampal CA1, in freely behaving male rats experiencing changes to reward magnitude and environmental novelty. Surprisingly, VTA silencing did not prevent ripple increases where reward was increased, but caused dramatic, aberrant ripple increases where reward was unchanged. These increases were associated with increased reverse-ordered replays. On familiar tracks this effect disappeared, and ripples tracked reward prediction error (RPE), indicating that non-VTA reward signals were sufficient to direct replay. Our results reveal a novel dependence of hippocampal replay on dopamine, and a role for a VTA-independent RPE signal that is reliable only in familiar environments.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of CTRP10 results in female obesity with preserved metabolic health.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-24 DOI: 10.7554/eLife.93373
Fangluo Chen, Dylan C Sarver, Muzna Saqib, Leandro M Velez, Susan Aja, Marcus M Seldin, G William Wong
{"title":"Loss of CTRP10 results in female obesity with preserved metabolic health.","authors":"Fangluo Chen, Dylan C Sarver, Muzna Saqib, Leandro M Velez, Susan Aja, Marcus M Seldin, G William Wong","doi":"10.7554/eLife.93373","DOIUrl":"10.7554/eLife.93373","url":null,"abstract":"<p><p>Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female <i>Ctrp10</i> knockout (KO) mice show rapid weight gain. Despite pronounced obesity, <i>Ctrp10</i> KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ORMDL3 restrains type I interferon signaling and anti-tumor immunity by promoting RIG-I degradation.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-24 DOI: 10.7554/eLife.101973
Qi Zeng, Chen Yao, Shimeng Zhang, Yizhi Mao, Jing Wang, Ziyang Wang, Chunjie Sheng, Shuai Chen
{"title":"ORMDL3 restrains type I interferon signaling and anti-tumor immunity by promoting RIG-I degradation.","authors":"Qi Zeng, Chen Yao, Shimeng Zhang, Yizhi Mao, Jing Wang, Ziyang Wang, Chunjie Sheng, Shuai Chen","doi":"10.7554/eLife.101973","DOIUrl":"10.7554/eLife.101973","url":null,"abstract":"<p><p>Mounting evidence has demonstrated the genetic association of ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene polymorphisms with bronchial asthma and a diverse set of inflammatory disorders. However, its role in type I interferon (type I IFN) signaling remains poorly defined. Herein, we report that ORMDL3 is a negative modulator of the type I IFN signaling by interacting with mitochondrial antiviral signaling protein (MAVS) and subsequently promoting the proteasome-mediated degradation of retinoic acid-inducible gene I (RIG-I). Immunoprecipitation coupled with mass spectrometry (IP-MS) assays uncovered that ORMDL3 binds to ubiquitin-specific protease 10 (USP10), which forms a complex with and stabilizes RIG-I through decreasing its K48-linked ubiquitination. ORMDL3 thus disrupts the interaction between USP10 and RIG-I, thereby promoting RIG-I degradation. Additionally, subcutaneous syngeneic tumor models in C57BL/6 mice revealed that inhibition of ORMDL3 enhances anti-tumor efficacy by augmenting the proportion of cytotoxic CD8 positive T cells and IFN production in the tumor microenvironment (TME). Collectively, our findings reveal the pivotal roles of ORMDL3 in maintaining antiviral innate immune responses and anti-tumor immunity.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The neural correlates of novelty and variability in human decision-making under an active inference framework.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-21 DOI: 10.7554/eLife.92892
Shuo Zhang, Yan Tian, Quanying Liu, Haiyan Wu
{"title":"The neural correlates of novelty and variability in human decision-making under an active inference framework.","authors":"Shuo Zhang, Yan Tian, Quanying Liu, Haiyan Wu","doi":"10.7554/eLife.92892","DOIUrl":"10.7554/eLife.92892","url":null,"abstract":"<p><p>Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zinc finger homeobox-3 (ZFHX3) orchestrates genome-wide daily gene expression in the suprachiasmatic nucleus.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-21 DOI: 10.7554/eLife.102019
Akanksha Bafna, Gareth Banks, Vadim Vasilyev, Robert Dallmann, Michael H Hastings, Patrick M Nolan
{"title":"Zinc finger homeobox-3 (ZFHX3) orchestrates genome-wide daily gene expression in the suprachiasmatic nucleus.","authors":"Akanksha Bafna, Gareth Banks, Vadim Vasilyev, Robert Dallmann, Michael H Hastings, Patrick M Nolan","doi":"10.7554/eLife.102019","DOIUrl":"10.7554/eLife.102019","url":null,"abstract":"<p><p>The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF <i>Bmal1</i>. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light-12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence of ion-channel-mediated electrical oscillations in Escherichia coli biofilms.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-21 DOI: 10.7554/eLife.92525
Emmanuel Akabuogu, Victor Carneiro da Cunha Martorelli, Rok Krašovec, Ian S Roberts, Thomas A Waigh
{"title":"Emergence of ion-channel-mediated electrical oscillations in <i>Escherichia coli</i> biofilms.","authors":"Emmanuel Akabuogu, Victor Carneiro da Cunha Martorelli, Rok Krašovec, Ian S Roberts, Thomas A Waigh","doi":"10.7554/eLife.92525","DOIUrl":"10.7554/eLife.92525","url":null,"abstract":"<p><p>Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional <i>Escherichia coli</i> biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single <i>E. coli</i> biofilms and long-range coordinated electrical signaling in <i>E. coli</i> biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-20 DOI: 10.7554/eLife.100796
Joshua G Medina-Feliciano, Griselle Valentín-Tirado, Kiara Luna-Martínez, Alejandra Beltran-Rivera, Yamil Miranda-Negrón, José E Garcia-Arraras
{"title":"Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium.","authors":"Joshua G Medina-Feliciano, Griselle Valentín-Tirado, Kiara Luna-Martínez, Alejandra Beltran-Rivera, Yamil Miranda-Negrón, José E Garcia-Arraras","doi":"10.7554/eLife.100796","DOIUrl":"10.7554/eLife.100796","url":null,"abstract":"<p><p>In holothurians, the regenerative process following evisceration involves the development of a 'rudiment' or 'anlage' at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two long-axis dimensions of hippocampal-cortical integration support memory function across the adult lifespan.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-20 DOI: 10.7554/eLife.97658
Kristin Nordin, Robin Pedersen, Farshad Falahati, Jarkko Johansson, Filip Grill, Micael Andersson, Saana M Korkki, Lars Bäckman, Andrew Zalesky, Anna Rieckmann, Lars Nyberg, Alireza Salami
{"title":"Two long-axis dimensions of hippocampal-cortical integration support memory function across the adult lifespan.","authors":"Kristin Nordin, Robin Pedersen, Farshad Falahati, Jarkko Johansson, Filip Grill, Micael Andersson, Saana M Korkki, Lars Bäckman, Andrew Zalesky, Anna Rieckmann, Lars Nyberg, Alireza Salami","doi":"10.7554/eLife.97658","DOIUrl":"10.7554/eLife.97658","url":null,"abstract":"<p><p>The hippocampus is a complex structure critically involved in numerous behavior-regulating systems. In young adults, multiple overlapping spatial modes along its longitudinal and transverse axes describe the organization of its functional integration with neocortex, extending the traditional framework emphasizing functional differences between sharply segregated hippocampal subregions. Yet, it remains unknown whether these modes (i.e. gradients) persist across the adult human lifespan, and relate to memory and molecular markers associated with brain function and cognition. In two independent samples, we demonstrate that the principal anteroposterior and second-order, mid-to-anterior/posterior hippocampal modes of neocortical functional connectivity, representing distinct dimensions of macroscale cortical organization, manifest across the adult lifespan. Specifically, individual differences in topography of the second-order gradient predicted episodic memory and mirrored dopamine D1 receptor distribution, capturing shared functional and molecular organization. Older age was associated with less distinct transitions along gradients (i.e. increased functional homogeneity). Importantly, a youth-like gradient profile predicted preserved episodic memory - emphasizing age-related gradient dedifferentiation as a marker of cognitive decline. Our results underscore a critical role of mapping multidimensional hippocampal organization in understanding the neural circuits that support memory across the adult lifespan.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue inflammation induced by constitutively active STING is mediated by enhanced TNF signaling.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-20 DOI: 10.7554/eLife.101350
Hella Luksch, Felix Schulze, David Geißler-Lösch, David Sprott, Lennart Höfs, Eva M Szegö, Wulf Tonnus, Stefan Winkler, Claudia Günther, Andreas Linkermann, Rayk Behrendt, Lino L Teichmann, Björn H Falkenburger, Angela Rösen-Wolff
{"title":"Tissue inflammation induced by constitutively active STING is mediated by enhanced TNF signaling.","authors":"Hella Luksch, Felix Schulze, David Geißler-Lösch, David Sprott, Lennart Höfs, Eva M Szegö, Wulf Tonnus, Stefan Winkler, Claudia Günther, Andreas Linkermann, Rayk Behrendt, Lino L Teichmann, Björn H Falkenburger, Angela Rösen-Wolff","doi":"10.7554/eLife.101350","DOIUrl":"https://doi.org/10.7554/eLife.101350","url":null,"abstract":"<p><p>Constitutive activation of STING by gain-of-function mutations triggers manifestation of the systemic autoinflammatory disease STING-associated vasculopathy with onset in infancy (SAVI). In order to investigate the role of signaling by tumor necrosis factor (TNF) in SAVI, we used genetic inactivation of TNF receptors 1 and 2 in murine SAVI, which is characterized by T cell lymphopenia, inflammatory lung disease and neurodegeneration. Genetic inactivation of TNFR1 and TNFR2, however, rescued the loss of thymocytes, reduced interstitial lung disease and neurodegeneration. Furthermore, genetic inactivation of TNFR1 and TNFR2 blunted transcription of cytokines, chemokines and adhesions proteins, which result from chronic STING activation in SAVI mice. In addition, increased transendothelial migration of neutrophils was ameliorated. Taken together, our results demonstrate a pivotal role of TNFR-signaling in the pathogenesis of SAVI in mice and suggest that available TNFR antagonists could ameliorate SAVI in patients.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoscale functional organization and connectivity of color, disparity, and naturalistic texture in human second visual area.
IF 6.4 1区 生物学
eLife Pub Date : 2025-03-20 DOI: 10.7554/eLife.93171
Hailin Ai, Weiru Lin, Chengwen Liu, Nihong Chen, Peng Zhang
{"title":"Mesoscale functional organization and connectivity of color, disparity, and naturalistic texture in human second visual area.","authors":"Hailin Ai, Weiru Lin, Chengwen Liu, Nihong Chen, Peng Zhang","doi":"10.7554/eLife.93171","DOIUrl":"10.7554/eLife.93171","url":null,"abstract":"<p><p>Although parallel processing has been extensively studied in the low-level geniculostriate pathway and the high-level dorsal and ventral visual streams, less is known at the intermediate-level visual areas. In this study, we employed high-resolution fMRI at 7T to investigate the columnar and laminar organizations for color, disparity, and naturalistic texture in the human secondary visual cortex (V2), and their informational connectivity with lower- and higher-order visual areas. Although fMRI activations in V2 showed reproducible interdigitated color-selective thin and disparity-selective thick 'stripe' columns, we found no clear evidence of columnar organization for naturalistic textures. Cortical depth-dependent analyses revealed the strongest color-selectivity in the superficial layers of V2, along with both feedforward and feedback informational connectivity with V1 and V4. Disparity selectivity was similar across different cortical depths of V2, which showed significant feedforward and feedback connectivity with V1 and V3ab. Interestingly, the selectivity for naturalistic texture was strongest in the deep layers of V2, with significant feedback connectivity from V4. Thus, while local circuitry within cortical columns is crucial for processing color and disparity information, feedback signals from V4 are involved in generating the selectivity for naturalistic textures in area V2.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信