Tilman Richter, Paolo Malgaretti, Thomas M. Koller, Jens Harting
{"title":"Chemically Reactive Thin Films: Dynamics and Stability","authors":"Tilman Richter, Paolo Malgaretti, Thomas M. Koller, Jens Harting","doi":"10.1002/admi.202400835","DOIUrl":"https://doi.org/10.1002/admi.202400835","url":null,"abstract":"<p>Catalyst particles or complexes suspended in liquid films can trigger chemical reactions leading to inhomogeneous concentrations of reactants and products in the film. It is demonstrated that the sensitivity of the liquid film's gas–liquid surface tension to these inhomogeneous concentrations strongly impacts the film stability. Using linear stability analysis, novel scenarios are identified in which the film can be either stabilized or destabilized by the reactions. Furthermore, it is found so far unrevealed rupture mechanisms which are absent in the chemically inactive case. The linear stability predictions are confirmed by numerical simulations, which also demonstrate that the shape of chemically active droplets can depart from the spherical cap and that unsteady states such as traveling and standing waves might appear. Finally, critically discussed the relevance of the predictions by showing that the range of the selected parameters is well accessible by typical experiments.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 9","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400835","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143913993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Sharbatian, Akhilesh Kamtikar, Danesh Ashouri Vajari, Thomas Stieglitz
{"title":"Assessing the Safety Margin for Micromotion-Induced Strain at Electrode–Tissue Interface: A Finite Element Analysis via COMSOL","authors":"Ali Sharbatian, Akhilesh Kamtikar, Danesh Ashouri Vajari, Thomas Stieglitz","doi":"10.1002/admi.202401001","DOIUrl":"https://doi.org/10.1002/admi.202401001","url":null,"abstract":"<p>Brain movement significantly impacts the biocompatibility of neural probes, primarily due to continuous loading and strain on neural tissue. This study investigates the strain profile at the electrode–tissue interface under various brain displacements—vertical, lateral, diagonal, and torque—across different brain models (linear elastic, hyperelastic, and viscoelastic). The safety margin for tissue damage is assessed by evaluating a 5% strain threshold using two probe widths (30 µm and 100 µm) in tethered and floating configurations. The probe dimensions are informed by previously developed devices implanted in rats for 12 weeks, allowing to correlate the findings with existing immunohistochemical data. A comprehensive simulation studies accounting for various conditions, such as different brain displacements and physics, has not been reported elsewhere. These results challenge the conventional 5% strain threshold for tissue damage, revealing that strains below this critical limit may still pose risks depending on probe geometry and brain model. Furthermore, these simulations underscore the necessity of size-dependent micromotion models for accurate predictions in untethered conditions. This work highlights the feasibility of integrating immunohistological data into simulation studies, offering valuable insights for researchers while minimizing the need for extensive animal testing during initial probe design phases.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 9","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202401001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143914650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure Identification of CO Monolayer on Ag(111) Using Atomic Force Microscopy","authors":"Mitsuo Kimura, Yuji Kunisada, Yoshiaki Sugimoto","doi":"10.1002/admi.202400904","DOIUrl":"https://doi.org/10.1002/admi.202400904","url":null,"abstract":"<p>Local structure analysis in physically adsorbed small molecule systems on metal surfaces remains challenging. The structural models of monolayers formed by weakly adsorbed CO molecules on Ag(111) surfaces have long been controversial. In this study, the structure of the CO monolayer is determined through high-resolution atomic force microscopy (AFM) observations at 4.5 K. Contrary to a previously proposed model based on scanning tunneling microscopy experiments [Phys. Rev. B 71, 153405 (2005)], it is found that the CO monolayer adopts a close-packed structure. Additionally, a superstructure associated with higher-order commensurate between the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msqrt>\u0000 <mn>31</mn>\u0000 </msqrt>\u0000 <mo>×</mo>\u0000 <msqrt>\u0000 <mn>31</mn>\u0000 </msqrt>\u0000 </mrow>\u0000 <annotation>$sqrt {31} times sqrt {31}$</annotation>\u0000 </semantics></math> lattice of Ag(111) and the 4 × 4 lattice of CO is identified. A structural model, involving the tilt of the CO molecular axis, is proposed based on AFM observations and density functional theory (DFT) calculations. Thermal fluctuations of the CO molecules are also observed, and the energy barrier derived from the hopping rate aligns with estimates from DFT calculations. These results indicate that AFM is powerful for atomic-level analysis of physisorption systems.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400904","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144118162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extracellular Vesicle Crosslinkers Constructing Hydrogels with Stress-Relaxation and Bioactive Protein Modification","authors":"Lufeng Shi, Yanzhen Jing, Haowen Lu, Fanxuan Zhao, Mengying An, Shuiling Jin, Chang Gao, Yongdong Dai, Yinxin Zhu, Shuxu Yang, Songying Zhang, Xuesong Ye, Xiujun Cai, Yifan Wang, Shangjing Xin","doi":"10.1002/admi.202400885","DOIUrl":"https://doi.org/10.1002/admi.202400885","url":null,"abstract":"<p>Extracellular vesicle (EV)-incorporated hydrogels have emerged as promising scaffolds for tissue repair due to their ability to present biological cues. However, the encapsulation efficiency and distribution of EVs within hydrogels still require improvement to enhance tissue healing outcomes. In this study, a novel approach is developed that uses EVs as crosslinkers for hydrogel formation, ensuring that EVs are present at every crosslinking point and thereby achieving both functional incorporation and uniform distribution of EVs. Amphiphilic molecules with various functional groups are successfully inserted into the EV membrane, enabling crosslinking with hydrogel macromers, which is versatile for multiple crosslinking chemistries. EV-crosslinked hydrogels exhibited faster stress relaxation properties due to EV stretchability compared to hydrogels crosslinked with traditional elastic polymers, promoting enhanced cell spreading and proliferation. Additionally, it is demonstrated that EV crosslinkers could present proteins throughout the hydrogel network while maintaining their biological activity. Using VEGF-loaded EV crosslinkers, induced endothelial cell clustering and sprouting are successfully, indicating early angiogenic responses. These results underscore the potential of EV-crosslinked hydrogels for tissue engineering and regenerative medicine, offering tunable mechanical properties and the capacity for effective protein delivery.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400885","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Li, Zhen Xu, Yang He, Qianxi Yang, Haoyang Pan, Yudi Wang, Xin Li, Huamei Chen, Yansong Wang, Wenjie Dong, Shimin Hou, Xiong Zhou, Qian Shen, Song Gao, Kai Wu, Yongfeng Wang, Yajie Zhang
{"title":"Detection and Manipulation of Interaction Between Magnetic DyPc2 Molecules and Superconducting Pb(111) Surface","authors":"Jie Li, Zhen Xu, Yang He, Qianxi Yang, Haoyang Pan, Yudi Wang, Xin Li, Huamei Chen, Yansong Wang, Wenjie Dong, Shimin Hou, Xiong Zhou, Qian Shen, Song Gao, Kai Wu, Yongfeng Wang, Yajie Zhang","doi":"10.1002/admi.202400788","DOIUrl":"https://doi.org/10.1002/admi.202400788","url":null,"abstract":"<p>Lanthanide double-decker phthalocyanine (LnPc<sub>2</sub>) complexes are highly coveted for their prospective uses in ultrahigh-density data storage and quantum computing. Notably, the quantum spin systems comprising these complexes and superconducting substrates exhibit unique quantum magnetic interactions. Through scanning tunneling microscopy (STM) and spectroscopy (STS) experiments, the interaction between the magnetic double-decker DyPc<sub>2</sub> molecules and the superconducting Pb(111) substrate is investigated. Three distinct adsorption patterns of DyPc<sub>2</sub> on Pb(111) are experimentally observed. Combined with DFT calculations, it is found that the ligand spin of the normal DyPc<sub>2</sub> molecules in the self-assembled monolayer (SAM) is quenched, which is attributed to strong charge transfer from Pb(111). However, special DyPc<sub>2</sub> molecules embedded in the SAM maintain ligand spin due to weak charge transfer, forming a complex quantum spin system with the superconducting substrate. Similarly, DyPc<sub>2</sub> molecules located on the second layer exhibit the same behavior. Under zero magnetic field, the Yu–Shiba–Rusinov (YSR) resonances are observed within the superconducting energy gap of both spin quantum systems. The Kondo resonance and the superconducting pairing occur at similar energy scales, indicating their coexistence and competition. This ultimately results in a Kondo-screened state. By controlling the sample bias, the special molecule can be switched to a normal molecule.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile Preparation of Durable Multicolor Superhydrophobic Coatings for Concrete Protection","authors":"Xueting Shi, Wenqiang Li, Fei Liu, Danbin Zhu, Yanhua Liu, Dianming Li, Libang Feng","doi":"10.1002/admi.202400810","DOIUrl":"https://doi.org/10.1002/admi.202400810","url":null,"abstract":"<p>Concrete is extensively used in construction, roadways, and other engineering fields. However, its hydrophilic and porous structure renders it susceptible to oxidative corrosion, sand erosion, and acid rain when exposed to outdoor environments. Therefore, developing superhydrophobic coatings with superior waterproofing properties is a critical strategy to protect concrete. Nevertheless, existing superhydrophobic concrete coatings suffer from issues, such as poor durability, complex application processes, restricted color options, and difficulties in large-scale production. Herein, a spraying method is developed that utilizes nano-SiO<sub>2</sub>, epoxy resin, cetyltriethoxysilane, and iron oxide dyes to produce a robust, corrosion-resistant, and multicolored superhydrophobic concrete coating with red, yellow, blue, and green colors. The produced coatings exhibit a water contact angle (CA) of 156° ± 1° and a sliding angle (SA) of 5° ± 1°. The hydrophobicity of the coatings arises from the synergistic effects of cetyltriethoxysilane, which provides low surface energy, and SiO<sub>2</sub>, which creates micro and nanoscale roughness on the coating surface. Meanwhile, the coating's robustness stems from the adhesive properties of epoxy resin and hydrogen-bonding interactions between SiO<sub>2</sub> and the concrete substrate. Thus, the developed superhydrophobic coating shows significant potential for extending the lifespan of concrete building facades, enhancing decorative and waterproofing features, and ensuring surface cleanliness.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 9","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143914749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Umay Sevgi Vardar, Johannes H. Bitter, Constantinos V. Nikiforidis
{"title":"Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers (Adv. Mater. Interfaces 5/2025)","authors":"Umay Sevgi Vardar, Johannes H. Bitter, Constantinos V. Nikiforidis","doi":"10.1002/admi.202570014","DOIUrl":"https://doi.org/10.1002/admi.202570014","url":null,"abstract":"<p><b>Lipid Droplet Carriers</b></p><p>The article 2400600 by Constantinos V. Nikiforidis and co-workers describe the transportation of lipophilic cargoes from Lipid Droplets (LDs) to lipid bilayers using liposomes. LDs loaded with curcumin and Nile red showed selective transfer, with only curcumin moving to liposomes due to its amphiphilicity. Understanding the transport mechanisms from LDs to lipid bilayers will aid their use as natural lipid carriers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vidumini S. Samarasiri, Sarah McGee, Tori Z. Forbes
{"title":"Exploring Impacts of Surface Coatings to Modify Water Uptake and Selectivity within Metal–Organic Nanotubes","authors":"Vidumini S. Samarasiri, Sarah McGee, Tori Z. Forbes","doi":"10.1002/admi.202400731","DOIUrl":"https://doi.org/10.1002/admi.202400731","url":null,"abstract":"<p>Mechanisms of uptake in metal–organic materials are complex and are dependent on the chemistry of the pore space and material interface. In the current study, the importance of the material surface is evaluated on the water uptake of a metal–organic nanotube (UMONT) crystalline solid. This material has previously demonstrated selective water uptake and reported isotherms suggested a two-step adsorption process that involved initial surface adsorption followed by pore filling. The proposed mechanism and importance of surface chemistry for water adsorption are tested by altering the surface of the UMONT with more hydrophobic surface coatings. Crystals of UMONT are coated with ammonium trifluoroacetate (ATFA), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN), and the water adsorption behavior is analyzed through batch and flow-through experiments. Uptake experiments reveal that ATFA significantly decreased the water uptake compared to observed in pristine UMONT while polymer coatings do not impact the adsorption behavior as significantly. In addition, ATFA disrupts the water selectivity of the UMONT material, allowing both ethanol and methanol to be detected in the system. These results indicate that changing the surface layer from a hydrophilic to hydrophobic with a chemisorbed monolayer will disturb the two-step mechanism and the water uptake properties of the material.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 8","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143852991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Morales, Max Gertig, Małgorzata Kot, Carlos Alvarado, Markus Andreas Schubert, Marvin Hartwig Zoellner, Christian Wenger, Karsten Henkel, Jan Ingo Flege
{"title":"In Situ X-Ray Photoelectron Spectroscopy Study of Atomic Layer Deposited Cerium Oxide on SiO2: Substrate Influence on the Reaction Mechanism During the Early Stages of Growth (Adv. Mater. Interfaces 5/2025)","authors":"Carlos Morales, Max Gertig, Małgorzata Kot, Carlos Alvarado, Markus Andreas Schubert, Marvin Hartwig Zoellner, Christian Wenger, Karsten Henkel, Jan Ingo Flege","doi":"10.1002/admi.202570012","DOIUrl":"https://doi.org/10.1002/admi.202570012","url":null,"abstract":"<p><b>Atomic Layer Deposition</b></p><p>Understanding complex growth mechanisms and interface effects is crucial for tuning the properties of ultrathin functional materials. In article 2400537, Jan Ingo Flege and co-workers have utilized classic surface techniques for in situ characterization of atomic-layer-deposited cerium oxide to unravel film-substrate interactions and determine, depending on the film thickness, the growth behavior and chemistry of this prototypical reducible oxide.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mario Alfonso Arenas García, Slah Hidouri, Xinxin Hao, Julia Maria de Medeiros Dantas, Noémie-Manuelle Dorval Courchesne
{"title":"Biological Synthesis of Reusable Silver Nanoparticle-Protein Antimicrobial Films","authors":"Mario Alfonso Arenas García, Slah Hidouri, Xinxin Hao, Julia Maria de Medeiros Dantas, Noémie-Manuelle Dorval Courchesne","doi":"10.1002/admi.202400649","DOIUrl":"https://doi.org/10.1002/admi.202400649","url":null,"abstract":"<p>Silver nanoparticles (AgNPs) are used in electronics, medical and environmental applications. However, the toxicity of AgNPs in humans and the environment is a cause of concern. To address this, AgNPs are incorporated into nanocomposites to control their release and activity. As such, it is proposed to use curli fibers as a biological scaffold to integrate AgNPs. Curli fibers are amyloid proteins present in bacterial biofilms. Due to their adherence to many surfaces, they can facilitate their interaction with a range of nanomaterials. Curli films are manufactured by crosslinking them with glutaraldehyde and subsequently synthesizing AgNPs. By changing the precursor concentrations, the content of AgNPs synthesized is modulated. Curli-AgNP films are stable in pHs between 3–11 and in different solvents for 24 h. The release of AgNPs is greatest in alkaline pHs, with practically no release in acidic conditions. Additionally, curli-AgNP films display antimicrobial activity against <i>E</i><i>scherichia</i> <i>coli (E. coli)</i> and <i>Bacillus subtilis</i> <i>(</i><i>B</i>. <i>subtilis)</i>, and the same film can be re-used multiple times against growing bacterial cultures. The ease of synthesis of curli-AgNP films coupled with their impressive stability, variable AgNPs release, and strong antimicrobial properties are suitable qualities that can be exploited to aid in wound healing or water treatment applications.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400649","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143787200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}