分层碳纤维复合材料的界面强度:界面模量和粗糙度的相互作用

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nihal Kanbargi, Sumit Gupta, Sargun Singh Rohewal, Logan T. Kearney, Amit K. Naskar
{"title":"分层碳纤维复合材料的界面强度:界面模量和粗糙度的相互作用","authors":"Nihal Kanbargi,&nbsp;Sumit Gupta,&nbsp;Sargun Singh Rohewal,&nbsp;Logan T. Kearney,&nbsp;Amit K. Naskar","doi":"10.1002/admi.202500135","DOIUrl":null,"url":null,"abstract":"<p>A facile, direct deposition approach that exploits van der Waals interactions between carbonaceous materials is utilized to create unidirectional hybrid carbon fiber composites. Two small molecule crosslinkers, a trifunctional aromatic (TL) and a difunctional aliphatic (DL) acyl chloride, are first utilized to create a crosslinked interphase with a softer and stiffer modulus respectively. TL crosslinked interphase with a higher modulus improved the tensile strength by 50%, despite non-covalent linking between fiber and matrix, elucidating the critical role of the interphase in alleviating modulus mismatch between the high modulus carbon fiber and the rubbery matrix. Fractional quantities of carbon nanotubes are additionally dispersed in the small molecule crosslinkers which behaved as a dispersant, helping introduce nanoasperities on the carbon fiber surface. Strong “pi-pi” interactions between CNTs and CF contributed to tensile properties, which are increased by 66% compared to the control. A cohesive zone model suggests that a stiffer interphase is better able to exploit surface heterogeneities and roughness on the fiber, synergistically enhancing interfacial strength.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 13","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500135","citationCount":"0","resultStr":"{\"title\":\"Interfacial Strength in Hierarchical Carbon Fiber Composites: Interplay of Interphase Modulus and Roughness\",\"authors\":\"Nihal Kanbargi,&nbsp;Sumit Gupta,&nbsp;Sargun Singh Rohewal,&nbsp;Logan T. Kearney,&nbsp;Amit K. Naskar\",\"doi\":\"10.1002/admi.202500135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A facile, direct deposition approach that exploits van der Waals interactions between carbonaceous materials is utilized to create unidirectional hybrid carbon fiber composites. Two small molecule crosslinkers, a trifunctional aromatic (TL) and a difunctional aliphatic (DL) acyl chloride, are first utilized to create a crosslinked interphase with a softer and stiffer modulus respectively. TL crosslinked interphase with a higher modulus improved the tensile strength by 50%, despite non-covalent linking between fiber and matrix, elucidating the critical role of the interphase in alleviating modulus mismatch between the high modulus carbon fiber and the rubbery matrix. Fractional quantities of carbon nanotubes are additionally dispersed in the small molecule crosslinkers which behaved as a dispersant, helping introduce nanoasperities on the carbon fiber surface. Strong “pi-pi” interactions between CNTs and CF contributed to tensile properties, which are increased by 66% compared to the control. A cohesive zone model suggests that a stiffer interphase is better able to exploit surface heterogeneities and roughness on the fiber, synergistically enhancing interfacial strength.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 13\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500135\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500135\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500135","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用碳质材料之间的范德华相互作用,一种简单、直接的沉积方法被用于制造单向混合碳纤维复合材料。两种小分子交联剂,三功能芳族(TL)和双功能脂肪族(DL)酰氯,首先被用来创建一个交联界面,分别具有更软和更硬的模量。尽管纤维与基体之间存在非共价连接,但具有较高模量的TL交联界面相的拉伸强度提高了50%,这说明界面相在缓解高模量碳纤维与橡胶基体之间的模量不匹配方面发挥了关键作用。另外,少量的碳纳米管分散在小分子交联剂中,起到分散剂的作用,有助于在碳纤维表面引入纳米颗粒。CNTs和CF之间强烈的“pi-pi”相互作用有助于提高拉伸性能,与对照组相比,拉伸性能提高了66%。黏结区模型表明,较硬的界面相能够更好地利用纤维表面的非均质性和粗糙度,从而协同提高界面强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial Strength in Hierarchical Carbon Fiber Composites: Interplay of Interphase Modulus and Roughness

Interfacial Strength in Hierarchical Carbon Fiber Composites: Interplay of Interphase Modulus and Roughness

A facile, direct deposition approach that exploits van der Waals interactions between carbonaceous materials is utilized to create unidirectional hybrid carbon fiber composites. Two small molecule crosslinkers, a trifunctional aromatic (TL) and a difunctional aliphatic (DL) acyl chloride, are first utilized to create a crosslinked interphase with a softer and stiffer modulus respectively. TL crosslinked interphase with a higher modulus improved the tensile strength by 50%, despite non-covalent linking between fiber and matrix, elucidating the critical role of the interphase in alleviating modulus mismatch between the high modulus carbon fiber and the rubbery matrix. Fractional quantities of carbon nanotubes are additionally dispersed in the small molecule crosslinkers which behaved as a dispersant, helping introduce nanoasperities on the carbon fiber surface. Strong “pi-pi” interactions between CNTs and CF contributed to tensile properties, which are increased by 66% compared to the control. A cohesive zone model suggests that a stiffer interphase is better able to exploit surface heterogeneities and roughness on the fiber, synergistically enhancing interfacial strength.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信