EJNMMI Physics最新文献

筛选
英文 中文
Automatic reorientation to generate short-axis myocardial PET images. 自动调整方向,生成短轴心肌 PET 图像。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-08-02 DOI: 10.1186/s40658-024-00673-9
Yuling Yang, Fanghu Wang, Xu Han, Hui Xu, Yangmei Zhang, Weiping Xu, Shuxia Wang, Lijun Lu
{"title":"Automatic reorientation to generate short-axis myocardial PET images.","authors":"Yuling Yang, Fanghu Wang, Xu Han, Hui Xu, Yangmei Zhang, Weiping Xu, Shuxia Wang, Lijun Lu","doi":"10.1186/s40658-024-00673-9","DOIUrl":"10.1186/s40658-024-00673-9","url":null,"abstract":"<p><strong>Background: </strong>Accurately redirecting reconstructed Positron emission tomography (PET) images into short-axis (SA) images shows great significance for subsequent clinical diagnosis. We developed a system for automatic redirection and quantitative analysis of myocardial PET images.</p><p><strong>Methods: </strong>A total of 128 patients were enrolled for 18 F-FDG PET/CT myocardial metabolic images (MMIs), including 3 image classifications: without defects, with defects, and excess uptake. The automatic reorientation system includes five modules: regional division, myocardial segmentation, ellipsoid fitting, image rotation and quantitative analysis. First, the left ventricular geometry-based canny edge detection (LVG-CED) was developed and compared with the other 5 common region segmentation algorithms, the optimized partitioning was determined based on partition success rate. Then, 9 myocardial segmentation methods and 4 ellipsoid fitting methods were combined to derive 36 cross combinations for diagnostic performance in terms of Pearson correlation coefficient (PCC), Kendall correlation coefficient (KCC), Spearman correlation coefficient (SCC), and determination coefficient. Finally, the deflection angles were computed by ellipsoid fitting and the SA images were derived by affine transformation. Furthermore, the polar maps were used for quantitative analysis of SA images, and the redirection effects of 3 different image classifications were analyzed using correlation coefficients.</p><p><strong>Results: </strong>On the dataset, LVG-CED outperformed other methods in the regional division module with a 100% success rate. In 36 cross combinations, PSO-FCM and LLS-SVD performed the best in terms of correlation coefficient. The linear results indicate that our algorithm (LVG-CED, PSO-FCM, and LLS-SVD) has good consistency with the reference manual method. In quantitative analysis, the similarities between our method and the reference manual method were higher than 96% at 17 segments. Moreover, our method demonstrated excellent performance in all 3 image classifications.</p><p><strong>Conclusion: </strong>Our algorithm system could realize accurate automatic reorientation and quantitative analysis of PET MMIs, which is also effective for images suffering from interference.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"70"},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dosimetric implications of kidney anatomical volume changes in 177Lu-DOTATATE therapy. 177Lu-DOTATATE疗法中肾脏解剖体积变化的剂量学影响。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-08-02 DOI: 10.1186/s40658-024-00672-w
Jehangir Khan, Tobias Rydèn, Martijn Van Essen, Johanna Svensson, Joseph Grudzinski, Peter Bernhardt
{"title":"Dosimetric implications of kidney anatomical volume changes in <sup>177</sup>Lu-DOTATATE therapy.","authors":"Jehangir Khan, Tobias Rydèn, Martijn Van Essen, Johanna Svensson, Joseph Grudzinski, Peter Bernhardt","doi":"10.1186/s40658-024-00672-w","DOIUrl":"10.1186/s40658-024-00672-w","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;This study aims to evaluate the use of CT-based whole kidney parenchyma (WKP) segmentation in &lt;sup&gt;177&lt;/sup&gt;Lu-DOTATATE dosimetry. Specifically, it investigates whether WKP volumes change during treatment and evaluates the accuracy of applying a single delineated WKP volume for dosimetry. Furthermore, it aims to determine the cause of WKP volume changes-whether caused by radiation or amino acid infusion-by comparing them with spleen volume changes as a marker for radiation-induced alterations.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;SPECT/CT images of 18 patients were acquired over the abdomen approximately 4 h (h) (D0), 24 h (D1), 48 h (D2) and 168 h (D7) post-administration of &lt;sup&gt;177&lt;/sup&gt;Lu-DOTATATE. CT guided WKP volumes were measured before (baseline) and during treatment. Kidney activity concentrations at each time point were derived from CT-segmented WKP overlaid on SPECT scans. The accuracy of using WKP segmentation from a single CT for all time points was assessed against the gold standard of segmenting each WKP individually. Time-integrated activity calculations were based on a tri-exponential curve fit of the kidney activity concentration over time. Kidney absorbed doses were estimated under the assumption of local energy deposition. Additionally, the impact of various partial volume correction methods on dosimetry was evaluated.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Whole-kidney parenchyma (WKP) volumes, ranging from 31 to 243 mL, showed a gradual increase from baseline (mean ± SD = 130.6 ± 46.1 mL) at the initial time points D0 (138.5 ± 44.7 mL) and D1 (139.4 ± 41.6 mL), followed by a slight decrease at D2 (132.8 ± 44.5 mL) and a further decrease at D7 (129.2 ± 42.7 mL). The volume increase at D0 and D1 was statistically significant. Spleen volume did not change during treatment, suggesting that amino acid infusion rather than irradiation effects caused WKP volume changes. Bland-Altman analysis revealed WKP volume biases of 8.77% (D0 vs. B&lt;sub&gt;L&lt;/sub&gt;), 10.77% (D1 vs. B&lt;sub&gt;L&lt;/sub&gt;), 1.10% (D2 vs. B&lt;sub&gt;L&lt;/sub&gt;), and 1.10% (D7 vs. B&lt;sub&gt;L&lt;/sub&gt;), with corresponding uncertainties of 24.4%, 23.6%, 25.4%, and 25.4%, respectively. When WKP segmentation from a single CT is applied across all SPECTs, these WKP volume changes could overestimate the activity concentration and mean absorbed doses up to 4.3% and 2.5%, respectively. The absorbed dose uncertainties using a recovery coefficient (RC) of 0.85 for single-time-point WKP delineation increase the absorbed dose uncertainty by 4% compared to the use of patient-specific RCs and time specific segmentation of WKP volumes.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;Kidney volume exhibited significant variation form D0 to D7, affecting the precision of dosimetry calculation, primarily due to errors in whole-kidney parenchyma (WKP) delineation. Notably, using WKP segmentation from a single CT scan applied to sequential SPECT images introduce further uncertainty and may lead to a","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"71"},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of kidney doses from [177Lu]Lu-DOTA-TATE PRRT using single time point post-treatment SPECT/CT. 利用单时间点治疗后 SPECT/CT 估算[177Lu]Lu-DOTA-TATE PRRT 的肾脏剂量。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-25 DOI: 10.1186/s40658-024-00665-9
Safia Spink, Daniel Gillett, Sarah Heard, Ines Harper, Ruth Casey, Luigi Aloj
{"title":"Estimation of kidney doses from [<sup>177</sup>Lu]Lu-DOTA-TATE PRRT using single time point post-treatment SPECT/CT.","authors":"Safia Spink, Daniel Gillett, Sarah Heard, Ines Harper, Ruth Casey, Luigi Aloj","doi":"10.1186/s40658-024-00665-9","DOIUrl":"10.1186/s40658-024-00665-9","url":null,"abstract":"<p><strong>Background: </strong>Dosimetry after [<sup>177</sup>Lu]Lu-DOTA-TATE therapy can be demanding for both patients and the clinical service due to the need for imaging at several time points. In this work we compare three methods of single time point (STP) kidney dosimetry after [<sup>177</sup>Lu]Lu-DOTA-TATE therapy with a multiple time point (MTP) dosimetry method.</p><p><strong>Method: </strong>Method 1 (MTP): Kidney doses were calculated from 31 patients including 107 therapy cycles. Post-therapy SPECT images were acquired on day 0, 4 and 7 along with a CT scan on day 4. A mono-exponential fit was used to calculate kidney doses using cycle specific data. Method 2 (Consistent effective half-life): The effective half-life [Formula: see text] calculated in cycle 1 was assumed consistent for subsequent cycles of therapy and the activity scaled using a single day 3-5 SPECT/CT. Methods 3 and 4 (Hänscheid and Madsen approximations): The Hänscheid approximation and Madsen approximation were both evaluated using a single SPECT/CT acquired on day 0, 4 and 7. All STP methods were compared to the MTP method for accuracy.</p><p><strong>Results: </strong>Using the MTP method, mean right and left kidney doses were calculated to be 2.9 ± 1.1 Gy and 2.8 ± 0.9 Gy respectively and the population [Formula: see text] was 56 ± 13 h. For the consistent [Formula: see text], Hänscheid and Madsen methods, the percentage of results within ± 20% of MTP method were 96% (n = 70), 95% (n = 80) and 94% (n = 80) respectively.</p><p><strong>Conclusion: </strong>All three single time point methods had > 94% of results within ± 20% of the MTP method, however the consistent [Formula: see text] method resulted in the highest alignment with the MTP method and is the only method which allows for calculation of the patient-specific [Formula: see text]. If only a single scan can be performed, day 4 is optimal for kidney dosimetry where the Hänscheid or Madsen approximation can be implemented with good accuracy.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"68"},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of the 3D-ring cadmium-zinc-telluride (CZT) StarGuide system according to the NEMA NU 1-2018 standard. 根据 NEMA NU 1-2018 标准对三维环形碲锌镉(CZT)StarGuide 系统进行性能评估。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-25 DOI: 10.1186/s40658-024-00671-x
Alessandra Zorz, Marco Andrea Rossato, Paolo Turco, Luca Maria Colombo Gomez, Andrea Bettinelli, Francesca De Monte, Marta Paiusco, Pietro Zucchetta, Diego Cecchin
{"title":"Performance evaluation of the 3D-ring cadmium-zinc-telluride (CZT) StarGuide system according to the NEMA NU 1-2018 standard.","authors":"Alessandra Zorz, Marco Andrea Rossato, Paolo Turco, Luca Maria Colombo Gomez, Andrea Bettinelli, Francesca De Monte, Marta Paiusco, Pietro Zucchetta, Diego Cecchin","doi":"10.1186/s40658-024-00671-x","DOIUrl":"10.1186/s40658-024-00671-x","url":null,"abstract":"<p><strong>Background: </strong>The application of semi-conductor detectors such as cadmium-zinc-telluride (CZT) in nuclear medicine improves extrinsic energy resolution and count sensitivity due to the direct conversion of gamma photons into electric signals. A 3D-ring pixelated CZT system named StarGuide was recently developed and implemented by GE HealthCare for SPECT acquisition. The system consists of 12 detector columns with seven modules of 16 × 16 CZT pixelated crystals, each with an integrated parallel-hole tungsten collimator. The axial coverage is 27.5 cm. The detector thickness is 7.25 mm, which allows acquisitions in the energy range [40-279] keV. Since there is currently no performance characterization specific to 3D-ring CZT SPECT systems, the National Electrical Manufacturers Association (NEMA) NU 1-2018 clinical standard can be tailored to these cameras. The aim of this study was to evaluate the performance of the SPECT/CT StarGuide system according to the NEMA NU 1-2018 clinical standard specifically adapted to characterize the new 3D-ring CZT.</p><p><strong>Results: </strong>Due to the integrated collimator, the system geometry and the pixelated nature of the detector, some NEMA tests have been adapted to the features of the system. The extrinsic measured energy resolution was about 5-6% for the tested isotopes (<sup>99m</sup>Tc, <sup>123</sup>I and <sup>57</sup>Co); the maximum count rate was 760 kcps and the observed count rate at 20% loss was 917 kcps. The system spatial resolution in air extrapolated at 10 cm with <sup>99m</sup>Tc was 7.2 mm, while the SPECT spatial resolutions with scatter were 4.2, 3.7 and 3.6 mm in a central, radial and tangential direction respectively. Single head sensitivity value for <sup>99m</sup>Tc was 97 cps/MBq; with 12 detector columns, the system volumetric sensitivity reached 520 kcps MBq<sup>-1</sup> cc<sup>-1</sup>.</p><p><strong>Conclusions: </strong>The performance tests of the StarGuide can be performed according to the NEMA NU 1-2018 standard with some adaptations. The system has shown promising results, particularly in terms of energy resolution, spatial resolution and volumetric sensitivity, potentially leading to higher quality clinical images.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"69"},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-modal co-learning with attention mechanism for head and neck tumor segmentation on 18FDG PET-CT. 在 18FDG PET-CT 上利用注意力机制进行头颈部肿瘤分割的多模态协同学习。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-25 DOI: 10.1186/s40658-024-00670-y
Min Jeong Cho, Donghwi Hwang, Si Young Yie, Jae Sung Lee
{"title":"Multi-modal co-learning with attention mechanism for head and neck tumor segmentation on <sup>18</sup>FDG PET-CT.","authors":"Min Jeong Cho, Donghwi Hwang, Si Young Yie, Jae Sung Lee","doi":"10.1186/s40658-024-00670-y","DOIUrl":"10.1186/s40658-024-00670-y","url":null,"abstract":"<p><strong>Purpose: </strong>Effective radiation therapy requires accurate segmentation of head and neck cancer, one of the most common types of cancer. With the advancement of deep learning, people have come up with various methods that use positron emission tomography-computed tomography to get complementary information. However, these approaches are computationally expensive because of the separation of feature extraction and fusion functions and do not make use of the high sensitivity of PET. We propose a new deep learning-based approach to alleviate these challenges.</p><p><strong>Methods: </strong>We proposed a tumor region attention module that fully exploits the high sensitivity of PET and designed a network that learns the correlation between the PET and CT features using squeeze-and-excitation normalization (SE Norm) without separating the feature extraction and fusion functions. In addition, we introduce multi-scale context fusion, which exploits contextual information from different scales.</p><p><strong>Results: </strong>The HECKTOR challenge 2021 dataset was used for training and testing. The proposed model outperformed the state-of-the-art models for medical image segmentation; in particular, the dice similarity coefficient increased by 8.78% compared to U-net.</p><p><strong>Conclusion: </strong>The proposed network segmented the complex shape of the tumor better than the state-of-the-art medical image segmentation methods, accurately distinguishing between tumor and non-tumor regions.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"67"},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence-based joint attenuation and scatter correction strategies for multi-tracer total-body PET. 基于人工智能的多示踪剂全身 PET 联合衰减和散射校正策略。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-19 DOI: 10.1186/s40658-024-00666-8
Hao Sun, Yanchao Huang, Debin Hu, Xiaotong Hong, Yazdan Salimi, Wenbing Lv, Hongwen Chen, Habib Zaidi, Hubing Wu, Lijun Lu
{"title":"Artificial intelligence-based joint attenuation and scatter correction strategies for multi-tracer total-body PET.","authors":"Hao Sun, Yanchao Huang, Debin Hu, Xiaotong Hong, Yazdan Salimi, Wenbing Lv, Hongwen Chen, Habib Zaidi, Hubing Wu, Lijun Lu","doi":"10.1186/s40658-024-00666-8","DOIUrl":"10.1186/s40658-024-00666-8","url":null,"abstract":"<p><strong>Background: </strong>Low-dose ungated CT is commonly used for total-body PET attenuation and scatter correction (ASC). However, CT-based ASC (CT-ASC) is limited by radiation dose risks of CT examinations, propagation of CT-based artifacts and potential mismatches between PET and CT. We demonstrate the feasibility of direct ASC for multi-tracer total-body PET in the image domain.</p><p><strong>Methods: </strong>Clinical uEXPLORER total-body PET/CT datasets of [<sup>18</sup>F]FDG (N = 52), [<sup>18</sup>F]FAPI (N = 46) and [<sup>68</sup>Ga]FAPI (N = 60) were retrospectively enrolled in this study. We developed an improved 3D conditional generative adversarial network (cGAN) to directly estimate attenuation and scatter-corrected PET images from non-attenuation and scatter-corrected (NASC) PET images. The feasibility of the proposed 3D cGAN-based ASC was validated using four training strategies: (1) Paired 3D NASC and CT-ASC PET images from three tracers were pooled into one centralized server (CZ-ASC). (2) Paired 3D NASC and CT-ASC PET images from each tracer were individually used (DL-ASC). (3) Paired NASC and CT-ASC PET images from one tracer ([<sup>18</sup>F]FDG) were used to train the networks, while the other two tracers were used for testing without fine-tuning (NFT-ASC). (4) The pre-trained networks of (3) were fine-tuned with two other tracers individually (FT-ASC). We trained all networks in fivefold cross-validation. The performance of all ASC methods was evaluated by qualitative and quantitative metrics using CT-ASC as the reference.</p><p><strong>Results: </strong>CZ-ASC, DL-ASC and FT-ASC showed comparable visual quality with CT-ASC for all tracers. CZ-ASC and DL-ASC resulted in a normalized mean absolute error (NMAE) of 8.51 ± 7.32% versus 7.36 ± 6.77% (p < 0.05), outperforming NASC (p < 0.0001) in [<sup>18</sup>F]FDG dataset. CZ-ASC, FT-ASC and DL-ASC led to NMAE of 6.44 ± 7.02%, 6.55 ± 5.89%, and 7.25 ± 6.33% in [<sup>18</sup>F]FAPI dataset, and NMAE of 5.53 ± 3.99%, 5.60 ± 4.02%, and 5.68 ± 4.12% in [<sup>68</sup>Ga]FAPI dataset, respectively. CZ-ASC, FT-ASC and DL-ASC were superior to NASC (p < 0.0001) and NFT-ASC (p < 0.0001) in terms of NMAE results.</p><p><strong>Conclusions: </strong>CZ-ASC, DL-ASC and FT-ASC demonstrated the feasibility of providing accurate and robust ASC for multi-tracer total-body PET, thereby reducing the radiation hazards to patients from redundant CT examinations. CZ-ASC and FT-ASC could outperform DL-ASC for cross-tracer total-body PET AC.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"66"},"PeriodicalIF":3.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of 177Lu dosimetry workflows: how to reduce the imaging workloads? 177Lu 剂量测定工作流程回顾:如何减少成像工作量?
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-18 DOI: 10.1186/s40658-024-00658-8
Laure Vergnaud, Yuni K Dewaraja, Anne-Laure Giraudet, Jean-Noël Badel, David Sarrut
{"title":"A review of 177Lu dosimetry workflows: how to reduce the imaging workloads?","authors":"Laure Vergnaud, Yuni K Dewaraja, Anne-Laure Giraudet, Jean-Noël Badel, David Sarrut","doi":"10.1186/s40658-024-00658-8","DOIUrl":"10.1186/s40658-024-00658-8","url":null,"abstract":"<p><p><math> <mrow><msup><mrow></mrow> <mn>177</mn></msup> <mtext>Lu</mtext></mrow> </math> radiopharmaceutical therapy is a standardized systemic treatment, with a typical dose of 7.4 GBq per injection, but its response varies from patient to patient. Dosimetry provides the opportunity to personalize treatment, but it requires multiple post-injection images to monitor the radiopharmaceutical's biodistribution over time. This imposes an additional imaging burden on centers with limited resources. This review explores methods to lessen this burden by optimizing acquisition types and minimizing the number and duration of imaging sessions. After summarizing the different steps of dosimetry and providing examples of dosimetric workflows for <math> <mrow><msup><mrow></mrow> <mn>177</mn></msup> <mtext>Lu</mtext></mrow> </math> -DOTATATE and <math> <mrow><msup><mrow></mrow> <mn>177</mn></msup> <mtext>Lu</mtext></mrow> </math> -PSMA, we examine dosimetric workflows based on a reduced number of acquisitions, or even just one. We provide a non-exhaustive description of simplified methods and their assumptions, as well as their limitations. Next, we detail the specificities of each normal tissue and tumors, before reviewing dose-response relationships in the literature. In conclusion, we will discuss the current limitations of dosimetric workflows and propose avenues for improvement.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"65"},"PeriodicalIF":3.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based measurement of split glomerular filtration rate with 99mTc-diethylenetriamine pentaacetic acid renal scan. 基于深度学习的 99mTc 二乙烯三胺五乙酸肾脏扫描分流肾小球滤过率测量。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-17 DOI: 10.1186/s40658-024-00664-w
Sejin Ha, Byung Soo Park, Sangwon Han, Jungsu S Oh, Sun Young Chae, Jae Seung Kim, Dae Hyuk Moon
{"title":"Deep learning-based measurement of split glomerular filtration rate with <sup>99m</sup>Tc-diethylenetriamine pentaacetic acid renal scan.","authors":"Sejin Ha, Byung Soo Park, Sangwon Han, Jungsu S Oh, Sun Young Chae, Jae Seung Kim, Dae Hyuk Moon","doi":"10.1186/s40658-024-00664-w","DOIUrl":"10.1186/s40658-024-00664-w","url":null,"abstract":"<p><strong>Purpose: </strong>To develop a deep learning (DL) model for generating automated regions of interest (ROIs) on <sup>99m</sup>Tc-diethylenetriamine pentaacetic acid (DTPA) renal scans for glomerular filtration rate (GFR) measurement.</p><p><strong>Methods: </strong>Manually-drawn ROIs retrieved from a Picture Archiving and Communications System were used as ground-truth (GT) labels. A two-dimensional U-Net convolutional neural network architecture with multichannel input was trained to generate DL ROIs. The agreement between GFR values from GT and DL ROIs was evaluated using Lin's concordance correlation coefficient (CCC) and slope coefficients for linear regression analyses. Bias and 95% limits of agreement (LOA) were assessed using Bland-Altman plots.</p><p><strong>Results: </strong>A total of 24,364 scans (12,822 patients) were included. Excellent concordance between GT and DL GFR was found for left (CCC 0.982, 95% confidence interval [CI] 0.981-0.982; slope 1.004, 95% CI 1.003-1.004), right (CCC 0.969, 95% CI 0.968-0.969; slope 0.954, 95% CI 0.953-0.955) and both kidneys (CCC 0.978, 95% CI 0.978-0.979; slope 0.979, 95% CI 0.978-0.979). Bland-Altman analysis revealed minimal bias between GT and DL GFR, with mean differences of - 0.2 (95% LOA - 4.4-4.0), 1.4 (95% LOA - 3.5-6.3) and 1.2 (95% LOA - 6.5-8.8) mL/min/1.73 m² for left, right and both kidneys, respectively. Notably, 19,960 scans (81.9%) showed an absolute difference in GFR of less than 5 mL/min/1.73 m².</p><p><strong>Conclusion: </strong>Our DL model exhibited excellent performance in the generation of ROIs on <sup>99m</sup>Tc-DTPA renal scans. This automated approach could potentially reduce manual effort and enhance the precision of GFR measurement in clinical practice.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"64"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organ and tumor dosimetry including method simplification for [177Lu]Lu-PSMA-I&T for treatment of metastatic castration resistant prostate cancer. 器官和肿瘤剂量测定,包括简化[177Lu]Lu-PSMA-I&T 治疗转移性阉割抵抗性前列腺癌的方法。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-17 DOI: 10.1186/s40658-024-00668-6
Amir Karimzadeh, Linus Schatz, Markus Sauer, Ivayla Apostolova, Ralph Buchert, Susanne Klutmann, Wencke Lehnert
{"title":"Organ and tumor dosimetry including method simplification for [<sup>177</sup>Lu]Lu-PSMA-I&T for treatment of metastatic castration resistant prostate cancer.","authors":"Amir Karimzadeh, Linus Schatz, Markus Sauer, Ivayla Apostolova, Ralph Buchert, Susanne Klutmann, Wencke Lehnert","doi":"10.1186/s40658-024-00668-6","DOIUrl":"10.1186/s40658-024-00668-6","url":null,"abstract":"<p><strong>Background: </strong>Internal dosimetry in individual patients is essential for safe and effective radioligand therapy. Multiple time point imaging for accurate dosimetry is time consuming and hence can be demanding for nuclear medicine departments as well as patients. The objectives of this study were (1) to assess absorbed doses to organs at risk and tumor lesions for [<sup>177</sup>Lu]Lu-PSMA-I&T using whole body SPECT imaging and (2) to investigate possible simplified dosimetry protocols.</p><p><strong>Methods: </strong>This study included 16 patients each treated with 4 cycles of [<sup>177</sup>Lu]Lu-PSMA-I&T. They underwent quantitative whole body SPECT/CT imaging (3 bed positions) at four time points (TP) comprising 2 h, 24 h, 48 h and 72-168 h post-injection (p.i.). Full 3D dosimetry (reference method) was performed for all patients and dose cycles for organs at risk (kidneys, parotid glands and submandibular glands) and up to ten tumor lesions per patient (resulting in 90 lesions overall). The simplified dosimetry methods (SM) included (1) generating time activity curves for subsequent cycles using a single TP of imaging applying the kinetics of dose cycle 1, and for organs at risk also (2) simple extrapolation from dose cycle 1 and (3) from both, dose cycle 1 and 2.</p><p><strong>Results: </strong>Normalized absorbed doses were 0.71 ± 0.32 mGy/MBq, 0.28 ± 0.12 mGy/MBq and 0.22 ± 0.08 mGy/MBq for kidneys, parotid glands and submandibular glands, respectively. Tumor doses decreased from 3.86 ± 3.38 mGy/MBq in dose cycle 1 to 2.01 ± 2.65 mGy/MBq in dose cycle 4. Compared to the full dosimetry approach the SM 1 using single TP imaging at 48 h p.i. resulted in the most accurate and precise results for the organs at risk in terms of absorbed doses per cycle and total cumulated dose. For tumor lesions better results were achieved using the fourth TP (≥ 72 h p.i.).</p><p><strong>Conclusion: </strong>Simplification of safety dosimetry protocols is possible for [<sup>177</sup>Lu]Lu-PSMA-I&T therapy. If tumor dosimetry is of interest a later imaging TP (≥ 72 h p.i.) should be used/added to account for the slower kinetics of tumors compared to organs at risk.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"63"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of the dosimetry of scandium-43 and scandium-44 patient organ doses in relation to commonly used gallium-68 for imaging neuroendocrine tumours. 比较钪-43 和钪-44 患者器官剂量与常用镓-68 在神经内分泌肿瘤成像中的剂量。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-07-15 DOI: 10.1186/s40658-024-00669-5
Carlos Vinícius Gomes, Bruno Melo Mendes, Lucas Paixão, Silvano Gnesin, Cristina Müller, Nicholas P van der Meulen, Klaus Strobel, Telma Cristina Ferreira Fonseca, Thiago Viana Miranda Lima
{"title":"Comparison of the dosimetry of scandium-43 and scandium-44 patient organ doses in relation to commonly used gallium-68 for imaging neuroendocrine tumours.","authors":"Carlos Vinícius Gomes, Bruno Melo Mendes, Lucas Paixão, Silvano Gnesin, Cristina Müller, Nicholas P van der Meulen, Klaus Strobel, Telma Cristina Ferreira Fonseca, Thiago Viana Miranda Lima","doi":"10.1186/s40658-024-00669-5","DOIUrl":"10.1186/s40658-024-00669-5","url":null,"abstract":"<p><strong>Background: </strong>Several research groups have explored the potential of scandium radionuclides for theragnostic applications due to their longer half-lives and equal or similar coordination chemistry between their diagnostic and therapeutic counterparts, as well as lutetium-177 and terbium-161, respectively. Unlike the gallium-68/lutetium-177 pair, which may show different in-vivo uptake patterns, the use of scandium radioisotopes promises consistent behaviour between diagnostic and therapeutic radiopeptides. An advantage of scandium's longer half-life over gallium-68 is the ability to study radiopeptide uptake over extended periods and its suitability for centralized production and distribution. However, concerns arise from scandium-44's decay characteristics and scandium-43's high production costs. This study aimed to evaluate the dosimetric implications of using scandium radioisotopes with somatostatin analogues against gallium-68 for PET imaging of neuroendocrine tumours.</p><p><strong>Methods: </strong>Absorbed dose per injected activity (AD/IA) from the generated time-integrated activity curve (TIAC) were estimated using the radiopeptides [<sup>43/44/44m</sup>Sc]Sc- and [<sup>68</sup>Ga]Ga-DOTATATE. The kidneys, liver, spleen, and red bone marrow (RBM) were selected for dose estimation studies. The EGSnrc and MCNP6.1 Monte Carlo (MC) codes were used with female (AF) and male (AM) ICRP phantoms. The results were compared to Olinda/EXM software, and the effective dose concentrations assessed, varying composition between the scandium radioisotopes.</p><p><strong>Results: </strong>Our findings showed good agreement between the MC codes, with - 3 ± 8% mean difference. Kidneys, liver, and spleen showed differences between the MC codes (min and max) in a range of - 4% to 8%. This was observed for both phantoms for all radiopeptides used in the study. Compared to Olinda/EXM the largest observed difference was for the RBM, of 21% for the AF and 16% for the AM for scandium- and gallium-based radiopeptides. Despite the differences, our findings showed a higher absorbed dose on [<sup>43/44</sup>Sc]Sc-DOTATATE compared to its <sup>68</sup>Ga-based counterpart.</p><p><strong>Conclusion: </strong>This study found that [<sup>43/44</sup>Sc]Sc-DOTATATE delivers a higher absorbed dose to organs at risk compared to [<sup>68</sup>Ga]Ga-DOTATATE, assuming equal distribution. This is due to the longer half-life of scandium radioisotopes compared to gallium-68. However, calculated doses are within acceptable ranges, making scandium radioisotopes a feasible replacement for gallium-68 in PET imaging, potentially offering enhanced diagnostic potential with later timepoint imaging.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"61"},"PeriodicalIF":3.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信