Rodrigo José Santo, André Salomon, Hugo W A M de Jong, Simon Stute, Thibaut Merlin, Casper Beijst
{"title":"openSSS: an open-source implementation of scatter estimation for 3D TOF-PET.","authors":"Rodrigo José Santo, André Salomon, Hugo W A M de Jong, Simon Stute, Thibaut Merlin, Casper Beijst","doi":"10.1186/s40658-025-00730-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Scatter correction is essential for quantitative and accurate time-of-flight (TOF) PET imaging. It is implemented by an accurate scatter estimation algorithm, to calculate the statistical distribution of scattered photons among the measured coincidences. However, to our knowledge, scatter estimation algorithms that account for TOF and that are compatible with custom geometries are not available in open-source reconstruction libraries, such as CASToR and STIR. To this end, we have developed an open-source implementation of the TOF-aware single-scatter-simulation (SSS) algorithm: openSSS.</p><p><strong>Results: </strong>openSSS is validated on NEMA phantoms and patient data, for three PET geometries, compared to Monte-Carlo simulations and two proprietary vendor-specific reconstruction platforms. The reconstructed images have similar contrast recovery and background variability, deviating by up to 3.7%-point on contrast recovery and 1.8 on background variability and looking visually similar.</p><p><strong>Conclusion: </strong>We have developed and validated an open-source scatter estimation library to complement reconstruction frameworks. By enabling vendor-independent clinical-grade reconstructions on custom scanner geometries, openSSS represents a crucial step in transparent research on quantitative PET and novel PET scanner designs.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"17"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00730-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Scatter correction is essential for quantitative and accurate time-of-flight (TOF) PET imaging. It is implemented by an accurate scatter estimation algorithm, to calculate the statistical distribution of scattered photons among the measured coincidences. However, to our knowledge, scatter estimation algorithms that account for TOF and that are compatible with custom geometries are not available in open-source reconstruction libraries, such as CASToR and STIR. To this end, we have developed an open-source implementation of the TOF-aware single-scatter-simulation (SSS) algorithm: openSSS.
Results: openSSS is validated on NEMA phantoms and patient data, for three PET geometries, compared to Monte-Carlo simulations and two proprietary vendor-specific reconstruction platforms. The reconstructed images have similar contrast recovery and background variability, deviating by up to 3.7%-point on contrast recovery and 1.8 on background variability and looking visually similar.
Conclusion: We have developed and validated an open-source scatter estimation library to complement reconstruction frameworks. By enabling vendor-independent clinical-grade reconstructions on custom scanner geometries, openSSS represents a crucial step in transparent research on quantitative PET and novel PET scanner designs.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.