Automated segmentation of the sacro-iliac joints, posterior spinal joints and discovertebral units on low-dose computed tomography for Na[18F]F PET lesion detection in spondyloarthritis patients.

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Wouter R P van der Heijden, Floris H P van Velden, Robert Hemke, Tom C Doorschodt, Ronald Boellaard, Conny J van der Laken, Gerben J C Zwezerijnen
{"title":"Automated segmentation of the sacro-iliac joints, posterior spinal joints and discovertebral units on low-dose computed tomography for Na[<sup>18</sup>F]F PET lesion detection in spondyloarthritis patients.","authors":"Wouter R P van der Heijden, Floris H P van Velden, Robert Hemke, Tom C Doorschodt, Ronald Boellaard, Conny J van der Laken, Gerben J C Zwezerijnen","doi":"10.1186/s40658-025-00734-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Spondyloarthritis (SpA) is a chronic inflammatory rheumatic disease which involves the axial skeleton. Quantitative sodium fluoride-18 (Na[<sup>18</sup>F]F) PET/CT is a new imaging approach promising for accurate diagnosis and treatment monitoring by assessment of molecular bone pathology in SpA. Detection of Na[<sup>18</sup>F]F PET positive lesions is time-consuming and subjective, and can be replaced by automatic methods. This study aims to develop and validate an algorithm for automated segmentation of the posterior spinal joints, sacro-iliac joints (SIJs) and discovertebral units (DVUs) on low-dose computed tomography (LDCT), and to employ these segmentations for threshold-based lesion detection.</p><p><strong>Methods: </strong>Two segmentation methods were developed using Na[<sup>18</sup>F]F PET/LDCT images from SpA patients. The first method employed morphological operations to delineate the joints and DVUs, while the second used a multi-atlas-based approach. The performance and reproducibility of these methods were assessed on ten manually segmented LDCTs using average Hausdorff distance (HD) and dice similarity coefficient (DSC) for DVUs and SIJs, and mean error distance for the posterior joints. Various quantitative PET metrics and background corrections were compared to determine optimal lesion detection performance relative to visual assessment.</p><p><strong>Results: </strong>The morphological method achieved significantly better DSC (0.82 (0.73-0.88) vs. 0.74 (0.68-0.79); p < 0.001) for all DVUs combined compared to the atlas-based method. The atlas-based method outperformed the morphological method for the posterior joints with a median error distance of 4.00 mm (4.00-5.66) vs. 5.66 mm (4.00-8.00) (p < 0.001). For lesion detection, the atlas-based segmentations were more successful than the morphological method, with the most accurate metric being the maximum standardized uptake value (SUVmax) of the lesional Na[<sup>18</sup>F]F uptake, corrected for the median SUV (SUVmedian) of the spine, with an area under the curve of 0.90.</p><p><strong>Conclusion: </strong>We present the first methods for detailed automatic segmentation of the posterior spinal joints, DVUs and SIJs on LDCT. The atlas-based method is the most appropriate, reaching high segmentation performance and lesion detection accuracy. More research on the PET-based lesion segmentation is required, to develop a pipeline for fully automated lesional Na[<sup>18</sup>F]F uptake quantification.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"20"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00734-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Spondyloarthritis (SpA) is a chronic inflammatory rheumatic disease which involves the axial skeleton. Quantitative sodium fluoride-18 (Na[18F]F) PET/CT is a new imaging approach promising for accurate diagnosis and treatment monitoring by assessment of molecular bone pathology in SpA. Detection of Na[18F]F PET positive lesions is time-consuming and subjective, and can be replaced by automatic methods. This study aims to develop and validate an algorithm for automated segmentation of the posterior spinal joints, sacro-iliac joints (SIJs) and discovertebral units (DVUs) on low-dose computed tomography (LDCT), and to employ these segmentations for threshold-based lesion detection.

Methods: Two segmentation methods were developed using Na[18F]F PET/LDCT images from SpA patients. The first method employed morphological operations to delineate the joints and DVUs, while the second used a multi-atlas-based approach. The performance and reproducibility of these methods were assessed on ten manually segmented LDCTs using average Hausdorff distance (HD) and dice similarity coefficient (DSC) for DVUs and SIJs, and mean error distance for the posterior joints. Various quantitative PET metrics and background corrections were compared to determine optimal lesion detection performance relative to visual assessment.

Results: The morphological method achieved significantly better DSC (0.82 (0.73-0.88) vs. 0.74 (0.68-0.79); p < 0.001) for all DVUs combined compared to the atlas-based method. The atlas-based method outperformed the morphological method for the posterior joints with a median error distance of 4.00 mm (4.00-5.66) vs. 5.66 mm (4.00-8.00) (p < 0.001). For lesion detection, the atlas-based segmentations were more successful than the morphological method, with the most accurate metric being the maximum standardized uptake value (SUVmax) of the lesional Na[18F]F uptake, corrected for the median SUV (SUVmedian) of the spine, with an area under the curve of 0.90.

Conclusion: We present the first methods for detailed automatic segmentation of the posterior spinal joints, DVUs and SIJs on LDCT. The atlas-based method is the most appropriate, reaching high segmentation performance and lesion detection accuracy. More research on the PET-based lesion segmentation is required, to develop a pipeline for fully automated lesional Na[18F]F uptake quantification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信