Energy & Environmental Materials最新文献

筛选
英文 中文
Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life 在硫化物电解质固态电池中加入离子导电聚合物以提高电化学稳定性和循环寿命
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-23 DOI: 10.1002/eem2.12776
Juhyoung Kim, Woonghee Choi, Seong-Ju Hwang, Dong Wook Kim
{"title":"Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life","authors":"Juhyoung Kim,&nbsp;Woonghee Choi,&nbsp;Seong-Ju Hwang,&nbsp;Dong Wook Kim","doi":"10.1002/eem2.12776","DOIUrl":"10.1002/eem2.12776","url":null,"abstract":"<p>Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries. The high ion conductivity, mechanical characteristics, and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes. However, the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries. Particularly, the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode, comprising various materials. In this study, carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes. Several instruments, including electrochemical spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy, confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes. Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12776","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-Induced Pre-Lithiation Enables High-Performing Si Anodes in All-Solid-State Batteries 压力诱导预硫化使全固态电池中的高性能硅阳极成为可能
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-23 DOI: 10.1002/eem2.12786
Weifei Hu, Yuanyuan Li, Jinping Liu
{"title":"Pressure-Induced Pre-Lithiation Enables High-Performing Si Anodes in All-Solid-State Batteries","authors":"Weifei Hu,&nbsp;Yuanyuan Li,&nbsp;Jinping Liu","doi":"10.1002/eem2.12786","DOIUrl":"10.1002/eem2.12786","url":null,"abstract":"<p>A commentary on pressure-induced pre-lithiation towards Si anodes in all-solid-state Li-ion batteries (ASSLIBs) using sulfide electrolytes (SEs) is presented. First, feasible pre-lithiation technologies for Si anodes in SE-based ASSLIBs especially the significant pressure-induced pre-lithiation strategies are briefly reviewed. Then, a recent achievement by Meng et al. in this field is elaborated in detail. Finally, the significance of Meng's work is discussed.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12786","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding of the Relationship between the Properties of Cu(In,Ga)Se2 Solar Cells and the Structure of Ag Network Electrodes 了解 Cu(In,Ga)Se2 太阳能电池的特性与 Ag 网络电极结构之间的关系
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-18 DOI: 10.1002/eem2.12765
Hyesun Yoo, Hoang Van Quy, Inpyo Lee, Seung Taek Jo, Tae Ei Hong, JunHo Kim, Dae-Hwang Yoo, Jinwook Shin, Walter Commerell, Dae-Hwan Kim, Jong Wook Roh
{"title":"Understanding of the Relationship between the Properties of Cu(In,Ga)Se2 Solar Cells and the Structure of Ag Network Electrodes","authors":"Hyesun Yoo,&nbsp;Hoang Van Quy,&nbsp;Inpyo Lee,&nbsp;Seung Taek Jo,&nbsp;Tae Ei Hong,&nbsp;JunHo Kim,&nbsp;Dae-Hwang Yoo,&nbsp;Jinwook Shin,&nbsp;Walter Commerell,&nbsp;Dae-Hwan Kim,&nbsp;Jong Wook Roh","doi":"10.1002/eem2.12765","DOIUrl":"10.1002/eem2.12765","url":null,"abstract":"<p>The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells is systemically investigated. The Ag network electrode is deposited onto an Al:ZnO (AZO) thin film, employing a self-forming cracked template. Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity. The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells. It is revealed that predominant fill factor (FF) is influenced by the figure of merit of transparent conducting electrodes, rather than sheet resistance, particularly when the coverage area falls within the range of 1.3–5%. Furthermore, a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar. When utilizing a thinner AZO film, CIGS solar cells with a surface area of 1.0609 cm<sup>2</sup> exhibit a notable performance improvement, with efficiency increasing from 10.48% to 11.63%. This enhancement is primarily attributed to the increase in FF from 45% to 65%. These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide (TCO) in CIGS modules with implications for practical applications in photovoltaic technology.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12765","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recyclable Technology of Thermosetting Resins for High Thermal Conductivity Materials Based on Physical Crushing 基于物理破碎的高导热材料热固性树脂可回收技术
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-18 DOI: 10.1002/eem2.12762
An Zhong MSc, Congzhen Xie PhD, Bin Gou MSc, Jiangang Zhou MSc, Huasong Xu MSc, Song Yu MSc, Daoming Zhang MSc, Chunhui Bi MSc, Hangchuan Cai MSc, Licheng Li PhD, Rui Wang PhD
{"title":"Recyclable Technology of Thermosetting Resins for High Thermal Conductivity Materials Based on Physical Crushing","authors":"An Zhong MSc,&nbsp;Congzhen Xie PhD,&nbsp;Bin Gou MSc,&nbsp;Jiangang Zhou MSc,&nbsp;Huasong Xu MSc,&nbsp;Song Yu MSc,&nbsp;Daoming Zhang MSc,&nbsp;Chunhui Bi MSc,&nbsp;Hangchuan Cai MSc,&nbsp;Licheng Li PhD,&nbsp;Rui Wang PhD","doi":"10.1002/eem2.12762","DOIUrl":"10.1002/eem2.12762","url":null,"abstract":"<p>Epoxy resin, characterized by prominent mechanical and electric-insulation properties, is the preferred material for packaging power electronic devices. Unfortunately, the efficient recycling and reuse of epoxy materials with thermally cross-linked molecular structures has become a daunting challenge. Here, we propose an economical and operable recycling strategy to regenerate waste epoxy resin into a high-performance material. Different particle size of waste epoxy micro-spheres (100–600 μm) with core-shell structure is obtained through simple mechanical crushing and boron nitride surface treatment. By using smattering epoxy monomer as an adhesive, an eco-friendly composite material with a “brick-wall structure” can be formed. The continuous boron nitride pathway with efficient thermal conductivity endows eco-friendly composite materials with a preeminent thermal conductivity of 3.71 W m<sup>−1</sup> K<sup>−1</sup> at a low content of 8.5 vol% h-BN, superior to pure epoxy resin (0.21 W m<sup>−1</sup> K<sup>−1</sup>). The composite, after secondary recycling and reuse, still maintains a thermal conductivity of 2.12 W m<sup>−1</sup> K<sup>−1</sup> and has mechanical and insulation properties comparable to the new epoxy resin (energy storage modulus of 2326.3 MPa and breakdown strength of 40.18 kV mm<sup>−1</sup>). This strategy expands the sustainable application prospects of thermosetting polymers, offering extremely high economic and environmental value.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12762","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes 用于可逆锌阳极的二维金属有机框架离子筛间相的原位生长
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-17 DOI: 10.1002/eem2.12769
Jing Sun, Qinping Jian, Bin Liu, Pengzhu Lin, Tianshou Zhao
{"title":"In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes","authors":"Jing Sun,&nbsp;Qinping Jian,&nbsp;Bin Liu,&nbsp;Pengzhu Lin,&nbsp;Tianshou Zhao","doi":"10.1002/eem2.12769","DOIUrl":"10.1002/eem2.12769","url":null,"abstract":"<p>Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety, cost-effectiveness, and high capacity. However, the service life of zinc metal anodes is severely constrained by critical challenges, including dendrites, water-induced hydrogen evolution, and passivation. In this study, a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method. The ultrathin interphase layer (~1 μm) is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1 Å, which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions, contributing to a uniform and highly reversible zinc deposition. With the shielding of the interphase layer, an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm<sup>−2</sup> and ~700 h at 1 mA cm<sup>−2</sup>, far exceeding that of the bare zinc anodes (250 and 70 h). Furthermore, as a proof-of-concept demonstration, the full cell paired with MnO<sub>2</sub> cathode demonstrates improved rate performances and stable cycling (1200 cycles at 1 A g<sup>−1</sup>). This work provides fresh insights into interphase design to promote the performance of zinc metal anodes.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction 揭示自立电极上钌态的和谐共存以增强氢气进化反应
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-02 DOI: 10.1002/eem2.12766
Joonhee Ma, Jin Hyuk Cho, Chaehyeon Lee, Moon Sung Kang, Sungkyun Choi, Ho Won Jang, Sang Hyun Ahn, Seoin Back, Soo Young Kim
{"title":"Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction","authors":"Joonhee Ma,&nbsp;Jin Hyuk Cho,&nbsp;Chaehyeon Lee,&nbsp;Moon Sung Kang,&nbsp;Sungkyun Choi,&nbsp;Ho Won Jang,&nbsp;Sang Hyun Ahn,&nbsp;Seoin Back,&nbsp;Soo Young Kim","doi":"10.1002/eem2.12766","DOIUrl":"10.1002/eem2.12766","url":null,"abstract":"<p>The development of cost-effective, highly efficient, and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction (HER). Herein, a simplified synthesis protocol was designed to achieve a self-standing electrode, composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters (ACP/Ru<sub>SAC+C</sub>) <i>via</i> acid activation, immersion, and high-temperature pyrolysis. Ab initio molecular dynamics (AIMD) calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper. Furthermore, the coexistence states of the Ru atoms are confirmed <i>via</i> aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect, tuning the electronic structure and thereby significantly enhancing their catalytic performance. Notably, the ACP/Ru<sub>SAC+C</sub> exhibits a remarkable turnover frequency (TOF) of 18 s<sup>−1</sup> and an exceptional mass activity (MA) of 2.2 A mg<sup>−1</sup>, surpassing the performance of conventional Pt electrodes. The self-standing electrode, featuring harmoniously coexisting Ru states, stands out as a prospective choice for advancing HER catalysts, enhancing energy efficiency, productivity, and selectivity.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12766","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Multi-Physics Behaviors and Performance Loss of Cylindrical Batteries Upon Low-Velocity Impact Loading 圆柱形电池在低速冲击载荷下的动态多物理特性和性能损失
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-02 DOI: 10.1002/eem2.12771
Qingdan Huang, Yang Bai, Han Luo, Yikai Jia, Chao Zhang
{"title":"Dynamic Multi-Physics Behaviors and Performance Loss of Cylindrical Batteries Upon Low-Velocity Impact Loading","authors":"Qingdan Huang,&nbsp;Yang Bai,&nbsp;Han Luo,&nbsp;Yikai Jia,&nbsp;Chao Zhang","doi":"10.1002/eem2.12771","DOIUrl":"10.1002/eem2.12771","url":null,"abstract":"<p>In challenging operational environments, Lithium-ion batteries (LIBs) inevitably experience mechanical stresses, including impacts and extrusion, which can lead to battery damage, failure, and even the occurrence of fire and explosion incidents. Consequently, it is imperative to investigate the safety performance of LIBs under mechanical loads. This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact. We systematically and experimentally uncovered the mechanical, electrochemical, and thermal responses, damage behavior, and corresponding mechanisms under various conditions. Our study demonstrates that higher impact energy results in increased structural stiffness, maximum temperature, and maximum voltage drop. Furthermore, heightened impact energy significantly influences the electrical resistance parameters within the internal resistance. We also examined the effects of State of Charge (SOC) and C-rates. The methodology and experimental findings will offer insights for enhancing the safety design, conducting risk assessments, and enabling the cascading utilization of energy storage systems based on LIBs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12771","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries 为稳定的锂金属电池激光构建具有晶体取向选择性的三维铜集流器
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-02 DOI: 10.1002/eem2.12768
Hui Li, Gang Wang, Jin Hu, Jun Li, Jiaxu Huang, Shaolin Xu
{"title":"Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries","authors":"Hui Li,&nbsp;Gang Wang,&nbsp;Jin Hu,&nbsp;Jun Li,&nbsp;Jiaxu Huang,&nbsp;Shaolin Xu","doi":"10.1002/eem2.12768","DOIUrl":"10.1002/eem2.12768","url":null,"abstract":"<p>The practical application of lithium (Li) metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites. To address this challenge, this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper (Cu) current collectors. Specifically, this approach enhances the prevalence of Cu (100) facets within the grooves, effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition. Unlike approaches that modify the entire surface of collectors, our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics. The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42% over 350 cycles at 1 mA cm<sup>−2</sup>. The symmetric cell can cycle stably for 1600 h at 0.5 mA cm<sup>−2</sup>. Furthermore, when integrated with LiFePO<sub>4</sub> cathodes, the full-cell configuration demonstrates outstanding capacity retention of 92.39% after 400 cycles at a 1C discharge rate. This study introduces a novel technique for fabricating selective lithiophilic three-dimensional (3D) Cu current collectors, thereby enhancing the performance of Li metal batteries. The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12768","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional Graphitic Carbon-Nitride (g-C3N4)-Coated LiNi0.8Co0.1Mn0.1O2 Cathodes for High-Energy-Density and Long-Life Lithium Batteries 用于高能量密度和长寿命锂电池的二维氮化石墨碳(g-C3N4)涂层 LiNi0.8Co0.1Mn0.1O2 阴极
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-06-02 DOI: 10.1002/eem2.12770
Zhenliang Duan, Pengbo Zhai, Ning Zhao, Xiangxin Guo
{"title":"Two-Dimensional Graphitic Carbon-Nitride (g-C3N4)-Coated LiNi0.8Co0.1Mn0.1O2 Cathodes for High-Energy-Density and Long-Life Lithium Batteries","authors":"Zhenliang Duan,&nbsp;Pengbo Zhai,&nbsp;Ning Zhao,&nbsp;Xiangxin Guo","doi":"10.1002/eem2.12770","DOIUrl":"10.1002/eem2.12770","url":null,"abstract":"<p>High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries. However, the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance. Herein, the thin layer of two-dimensional (2D) graphitic carbon-nitride (g-C<sub>3</sub>N<sub>4</sub>) is uniformly coated on the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (denoted as NCM811@CN) using a facile chemical vaporization-assisted synthesis method. As an ideal protective layer, the g-C<sub>3</sub>N<sub>4</sub> layer effectively avoids direct contact between the NCM811 cathode and the electrolyte, preventing harmful side reactions and inhibiting secondary crystal cracking. Moreover, the unique nanopore structure and abundant nitrogen vacancy edges in g-C<sub>3</sub>N<sub>4</sub> facilitate the adsorption and diffusion of lithium ions, which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode. As a result, the NCM811@CN-3wt% cathode exhibits 161.3 mAh g<sup>−1</sup> and capacity retention of 84.6% at 0.5 C and 55 °C after 400 cycles and 95.7 mAh g<sup>−1</sup> at 10 C, which is greatly superior to the uncoated NCM811 (i.e. 129.3 mAh g<sup>−1</sup> and capacity retention of 67.4% at 0.5 C and 55 °C after 220 cycles and 28.8 mAh g<sup>−1</sup> at 10 C). The improved cycle performance of the NCM811@CN-3wt% cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes, which show 163.8 mAh g<sup>−1</sup> and the capacity retention of 88.1% at 0.1 C and 30 °C after 200 cycles and 95.3 mAh g<sup>−1</sup> at 1 C.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility 表面涂层使硫化物固体电解质具有优异的空气稳定性和锂兼容性
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-31 DOI: 10.1002/eem2.12753
Min Luo, Changhong Wang, Yi Duan, Xuyang Zhao, Jiantao Wang, Xueliang Sun
{"title":"Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility","authors":"Min Luo,&nbsp;Changhong Wang,&nbsp;Yi Duan,&nbsp;Xuyang Zhao,&nbsp;Jiantao Wang,&nbsp;Xueliang Sun","doi":"10.1002/eem2.12753","DOIUrl":"10.1002/eem2.12753","url":null,"abstract":"<p>All-solid-state lithium metal batteries (ASSLMBs) featuring sulfide solid electrolytes (SEs) are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density. However, lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs. Here, a thin layer (approximately 5 nm) of g-C<sub>3</sub>N<sub>4</sub> is coated on the surface of a sulfide SE (Li<sub>6</sub>PS<sub>5</sub>Cl), which not only lowers the electronic conductivity of Li<sub>6</sub>PS<sub>5</sub>Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li<sub>3</sub>N at the Li/Li<sub>6</sub>PS<sub>5</sub>Cl interface. Additionally, the g-C<sub>3</sub>N<sub>4</sub> coating on the surface can substantially reduce the formation of H<sub>2</sub>S when Li<sub>6</sub>PS<sub>5</sub>Cl is exposed to humid air. As a result, Li–Li symmetrical cells using g-C<sub>3</sub>N<sub>4</sub>-coated Li<sub>6</sub>PS<sub>5</sub>Cl stably cycle for 1000 h with a current density of 0.2 mA cm<sup>−2</sup>. ASSLMBs paired with LiNbO<sub>3</sub>-coated LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> exhibit a capacity of 132.8 mAh g<sup>−1</sup> at 0.1 C and a high-capacity retention of 99.1% after 200 cycles. Furthermore, g-C<sub>3</sub>N<sub>4</sub>-coated Li<sub>6</sub>PS<sub>5</sub>Cl effectively mitigates the self-discharge behavior observed in ASSLMBs. This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12753","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信