{"title":"Review and Future Perspectives on Lithium Battery Fire Safety: Focusing on Design of Organic Components","authors":"Qianlong Li, Yunlei Xu, Ye-Tang Pan, Wei Wang, Guan Heng Yeoh","doi":"10.1002/eem2.12892","DOIUrl":null,"url":null,"abstract":"<p>The widespread use of lithium batteries has led to frequent fire hazards, which significantly threaten both human lives and property safety. One of the primary challenges in enhancing the fire safety of lithium batteries lies in the flammability of their organic components. As electronic devices continue to proliferate, the integration of liquid electrolytes and separators has become common. However, these components are prone to high volatility and leakage, which limits their safety. Fortunately, recent advancements in solid-state and gel electrolytes have demonstrated promising performance in laboratory settings, providing solutions to these issues. Typically, improving the flame retardancy and fire safety of lithium batteries involves careful design of the formulations or molecular structures of the organic materials. Moreover, the internal interfacial interactions also play a vital role in ensuring safety. This review examines the innovative design strategies developed over the past 5 years to address the fire safety concerns associated with lithium batteries. Future advancements in the next generation of high-safety lithium batteries should not only focus on optimizing component design but also emphasize rigorous operational testing. This dual approach will drive further progress in battery safety research and development, enhancing the overall reliability of lithium battery systems.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 4","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12892","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12892","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of lithium batteries has led to frequent fire hazards, which significantly threaten both human lives and property safety. One of the primary challenges in enhancing the fire safety of lithium batteries lies in the flammability of their organic components. As electronic devices continue to proliferate, the integration of liquid electrolytes and separators has become common. However, these components are prone to high volatility and leakage, which limits their safety. Fortunately, recent advancements in solid-state and gel electrolytes have demonstrated promising performance in laboratory settings, providing solutions to these issues. Typically, improving the flame retardancy and fire safety of lithium batteries involves careful design of the formulations or molecular structures of the organic materials. Moreover, the internal interfacial interactions also play a vital role in ensuring safety. This review examines the innovative design strategies developed over the past 5 years to address the fire safety concerns associated with lithium batteries. Future advancements in the next generation of high-safety lithium batteries should not only focus on optimizing component design but also emphasize rigorous operational testing. This dual approach will drive further progress in battery safety research and development, enhancing the overall reliability of lithium battery systems.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.