Energy & Environmental Materials最新文献

筛选
英文 中文
Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries 用于高性能锂离子电池的稳定镍-瑞克层氧化物电极
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-13 DOI: 10.1002/eem2.12741
Zahra Ahaliabadeh, Ville Miikkulainen, Miia Mäntymäki, Mattia Colalongo, Seyedabolfazl Mousavihashemi, Lide Yao, Hua Jiang, Jouko Lahtinen, Timo Kankaanpää, Tanja Kallio
{"title":"Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries","authors":"Zahra Ahaliabadeh,&nbsp;Ville Miikkulainen,&nbsp;Miia Mäntymäki,&nbsp;Mattia Colalongo,&nbsp;Seyedabolfazl Mousavihashemi,&nbsp;Lide Yao,&nbsp;Hua Jiang,&nbsp;Jouko Lahtinen,&nbsp;Timo Kankaanpää,&nbsp;Tanja Kallio","doi":"10.1002/eem2.12741","DOIUrl":"10.1002/eem2.12741","url":null,"abstract":"<p>Next-generation Li-ion batteries are expected to exhibit superior energy and power density, along with extended cycle life. Ni-rich high-capacity layered nickel manganese cobalt oxide electrode materials (NMC) hold promise in achieving these objectives, despite facing challenges such as capacity fade due to various degradation modes. Crack formation within NMC-based cathode secondary particles, leading to parasitic reactions and the formation of inactive crystal structures, is a critical degradation mechanism. Mechanical and chemical degradation further deteriorate capacity and lifetime. To mitigate these issues, an artificial cathode electrolyte interphase can be applied to the active material before battery cycling. While atomic layer deposition (ALD) has been extensively explored for active material coatings, molecular layer deposition (MLD) offers a complementary approach. When combined with ALD, MLD enables the deposition of flexible hybrid coatings that can accommodate electrode material volume changes during battery operation. This study focuses on depositing <span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>TiO</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow></math>-titanium terephthalate thin films on a <span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mtext>LiNi</mtext>\u0000 <mn>0.8</mn>\u0000 </msub>\u0000 <msub>\u0000 <mi>Mn</mi>\u0000 <mn>0.1</mn>\u0000 </msub>\u0000 <msub>\u0000 <mi>Co</mi>\u0000 <mn>0.1</mn>\u0000 </msub>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow></math> electrode via ALD-MLD. The electrochemical evaluation demonstrates favorable lithium-ion kinetics and reduced electrolyte decomposition. Overall, the films deposited through ALD-MLD exhibit promising features as flexible and protective coatings for high-energy lithium-ion battery electrodes, offering potential contributions to the enhancement of advanced battery technologies and supporting the growth of the EV and stationary battery industries.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12741","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable Jet-Based Fabrication of PEI-Hydrogel Particles for CO2 Capture 基于可扩展喷射技术制造用于二氧化碳捕获的聚乙烯醇缩水甘油醚(PEI-Hydrogel)颗粒
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-13 DOI: 10.1002/eem2.12748
Jieke Jiang, Eline van Daatselaar, Hylke Wijnja, Tessa de Koning Gans, Michel Schellevis, Cornelis H. Venner, Derk W.F. Brilman, Claas Willem Visser
{"title":"Scalable Jet-Based Fabrication of PEI-Hydrogel Particles for CO2 Capture","authors":"Jieke Jiang,&nbsp;Eline van Daatselaar,&nbsp;Hylke Wijnja,&nbsp;Tessa de Koning Gans,&nbsp;Michel Schellevis,&nbsp;Cornelis H. Venner,&nbsp;Derk W.F. Brilman,&nbsp;Claas Willem Visser","doi":"10.1002/eem2.12748","DOIUrl":"10.1002/eem2.12748","url":null,"abstract":"<p>The capture, regeneration, and conversion of CO<sub>2</sub> from ambient air and flue gas streams are critical aspects of mitigating global warming. Solid sorbents for CO<sub>2</sub> absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents. However, precisely tunable solid CO<sub>2</sub> sorbents are difficult to produce. Here, we demonstrate the high-throughput production of hydrogel-based CO<sub>2</sub>-absorbing particles <i>via</i> liquid jetting. By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine (PEI) with a layer of suspension containing hydrophobic silica nanoparticles, monodisperse droplets with a silica nanoparticle coating layer was formed in the air. A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath. The droplets turn into mm-sized particles after thermal curing in the bath. The diameter, PEI content, and silica content of the particles were systematically varied, and their CO<sub>2</sub> absorption was measured as a function of time. Steam regeneration of the particles enabled cyclic testing, revealing a CO<sub>2</sub> absorption capacity of 6.5 ± 0.5 mol kg<sup>−1</sup> solid PEI in pure CO<sub>2</sub> environments and 0.7 ± 0.3 mol kg<sup>−1</sup> solid PEI for direct air capture. Several thousands of particles were produced per second at a rate of around 0.5 kg per hour, with a single nozzle. This process can be further scaled by parallelization. The complete toolbox for the design, fabrication, testing, and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO<sub>2</sub> capture.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel–Nitrogen–Carbon (Ni–N–C) Electrocatalysts Toward CO2 electroreduction to CO: Advances, Optimizations, Challenges, and Prospects 镍-氮-碳(Ni-N-C)电催化剂用于将二氧化碳电还原为一氧化碳:进展、优化、挑战与前景
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-13 DOI: 10.1002/eem2.12731
Qingqing Pang, Xizheng Fan, Kaihang Sun, Kun Xiang, Baojun Li, Shufang Zhao, Young Dok Kim, Qiaoyun Liu, Zhongyi Liu, Zhikun Peng
{"title":"Nickel–Nitrogen–Carbon (Ni–N–C) Electrocatalysts Toward CO2 electroreduction to CO: Advances, Optimizations, Challenges, and Prospects","authors":"Qingqing Pang,&nbsp;Xizheng Fan,&nbsp;Kaihang Sun,&nbsp;Kun Xiang,&nbsp;Baojun Li,&nbsp;Shufang Zhao,&nbsp;Young Dok Kim,&nbsp;Qiaoyun Liu,&nbsp;Zhongyi Liu,&nbsp;Zhikun Peng","doi":"10.1002/eem2.12731","DOIUrl":"10.1002/eem2.12731","url":null,"abstract":"<p>Electrocatalytic reduction of CO<sub>2</sub> into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems. Constructing electrocatalyst with high activity, selectivity, stability, and low cost is really matter to realize industrial application of electrocatalytic CO<sub>2</sub> reduction (ECR). Metal–nitrogen–carbon (M–N–C), especially Ni–N–C, display excellent performance, such as nearly 100% CO selectivity, high current density, outstanding tolerance, etc., which is considered to possess broad application prospects. Based on the current research status, starting from the mechanism of ECR and the existence form of Ni active species, the latest research progress of Ni–N–C electrocatalysts in CO<sub>2</sub> electroreduction is systematically summarized. An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni–N–C, including N coordination modulation, vacancy defects construction, morphology design, surface modification, heteroatom activation, and bimetallic cooperation. Finally, some urgent problems and future prospects on designing Ni–N–C catalysts for ECR are discussed. This review aims to provide the guidance for the design and development of Ni–N–C catalysts with practical application.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes 利用燃料电池系统和陶瓷膜从海水和矿井水中连续提取锂离子
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-12 DOI: 10.1002/eem2.12742
Cansu Kök, Lei Wang, Jean Gustavo A. Ruthes, Antje Quade, Matthew E. Suss, Volker Presser
{"title":"Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes","authors":"Cansu Kök,&nbsp;Lei Wang,&nbsp;Jean Gustavo A. Ruthes,&nbsp;Antje Quade,&nbsp;Matthew E. Suss,&nbsp;Volker Presser","doi":"10.1002/eem2.12742","DOIUrl":"10.1002/eem2.12742","url":null,"abstract":"<p>The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world. Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods. Herein, we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode. The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li<sup>+</sup>/Na<sup>+</sup> while producing electricity. Our data show that the fuel cell with a titania-coated electrode achieves 95% lithium-ion purity while generating 10.23 Wh of energy per gram of lithium. Our investigation revealed that using atomic layer deposition improved the electrode's uniformity, stability, and electrocatalytic activity. After 2000 cycles determined by cyclic voltammetry, the electrode preserved its stability.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12742","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ab Initio Design of Ni-Rich Cathode Material with Assistance of Machine Learning for High Energy Lithium-Ion Batteries 利用机器学习技术设计高能锂离子电池的富镍阴极材料
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-11 DOI: 10.1002/eem2.12744
Xinyu Zhang, Daobin Mu, Shijie Lu, Yuanxing Zhang, Yuxiang Zhang, Zhuolin Yang, Zhikun Zhao, Borong Wu, Feng Wu
{"title":"Ab Initio Design of Ni-Rich Cathode Material with Assistance of Machine Learning for High Energy Lithium-Ion Batteries","authors":"Xinyu Zhang,&nbsp;Daobin Mu,&nbsp;Shijie Lu,&nbsp;Yuanxing Zhang,&nbsp;Yuxiang Zhang,&nbsp;Zhuolin Yang,&nbsp;Zhikun Zhao,&nbsp;Borong Wu,&nbsp;Feng Wu","doi":"10.1002/eem2.12744","DOIUrl":"10.1002/eem2.12744","url":null,"abstract":"<p>With the widespread use of lithium-ion batteries in electric vehicles, energy storage, and mobile terminals, there is an urgent need to develop cathode materials with specific properties. However, existing material control synthesis routes based on repetitive experiments are often costly and inefficient, which is unsuitable for the broader application of novel materials. The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials. Here, we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model. The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies, helping to shorten the experimental duration and costs. After the model-guided design synthesis, cathode materials with different morphological characteristics can be obtained, and the best shows a high discharge capacity of 206 mAh g<sup>−1</sup> at 0.1C and 83% capacity retention after 200 cycles. This work provides guidance for designing cathode materials for lithium-ion batteries, which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12744","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2.5 μm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries 用于稳定金属锂电池的 2.5 μm 厚超强不对称隔膜
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-11 DOI: 10.1002/eem2.12746
Donghao Xie, Zekun Wang, Xin Ma, Yuchen Feng, Xiaomin Tang, Qiao Gu, Yonghong Deng, Ping Gao
{"title":"2.5 μm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries","authors":"Donghao Xie,&nbsp;Zekun Wang,&nbsp;Xin Ma,&nbsp;Yuchen Feng,&nbsp;Xiaomin Tang,&nbsp;Qiao Gu,&nbsp;Yonghong Deng,&nbsp;Ping Gao","doi":"10.1002/eem2.12746","DOIUrl":"10.1002/eem2.12746","url":null,"abstract":"<p>Lithium metal batteries (LMBs) are considered the ideal choice for high volumetric energy density lithium-ion batteries, but uncontrolled lithium deposition poses a significant challenge to the stability of such devices. In this paper, we introduce a 2.5 μm-thick asymmetric and ultrastrong separator, which can induce tissue-like lithium deposits. The asymmetric separator, denoted by utPE@Cu<sub>2</sub>O, was prepared by selective synthesis of Cu<sub>2</sub>O nanoparticles on one of the outer surfaces of a nanofibrous (diameter ~10 nm) ultrastrong ultrahigh molecular weight polyethylene (UHMWPE) membrane. Microscopic analysis shows that the lithium deposits have tissue-like morphology, resulting in the symmetric lithium cells assembled using utPE@Cu<sub>2</sub>O with symmetric Cu<sub>2</sub>O coating exhibiting stable performance for over 2000 h of cycling. This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries, providing a pathway towards enhanced battery performance and safety.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells 通过在过氧化物太阳能电池中封装粘弹性界面来抵御热冲击
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-11 DOI: 10.1002/eem2.12739
Sai Ma, Jiahong Tang, Guizhou Yuan, Ying Zhang, Yan Wang, Yuetong Wu, Cheng Zhu, Yimiao Wang, Shengfang Wu, Yue Lu, Shumeng Chi, Tinglu Song, Huanping Zhou, Manling Sui, Yujing Li, Qi Chen
{"title":"Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells","authors":"Sai Ma,&nbsp;Jiahong Tang,&nbsp;Guizhou Yuan,&nbsp;Ying Zhang,&nbsp;Yan Wang,&nbsp;Yuetong Wu,&nbsp;Cheng Zhu,&nbsp;Yimiao Wang,&nbsp;Shengfang Wu,&nbsp;Yue Lu,&nbsp;Shumeng Chi,&nbsp;Tinglu Song,&nbsp;Huanping Zhou,&nbsp;Manling Sui,&nbsp;Yujing Li,&nbsp;Qi Chen","doi":"10.1002/eem2.12739","DOIUrl":"10.1002/eem2.12739","url":null,"abstract":"<p>Enhancing the lifetime of perovskite solar cells (PSCs) is one of the essential challenges for their industrialization. Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions. However, the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging, respectively, resulting in irreversible damage to the morphology, component, and phase of stacked materials. Herein, the viscoelastic polymer polyvinyl butyral (PVB) material is designed onto the surface of perovskite films to form flexible interface encapsulation. After PVB interface encapsulation, the surface modulus of perovskite films decreases by nearly 50%, and the interface stress range under the dynamic temperature field (−40 to 85 °C) drops from −42.5 to 64.8 MPa to −14.8 to 5.0 MPa. Besides, PVB forms chemical interactions with FA<sup>+</sup> cations and Pb<sup>2+</sup>, and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film. As a result, the optimized device's efficiency increases from 22.21% to 23.11%. Additionally, after 1500 h of thermal treatment (85 °C), 1000 h of damp heat test (85 °C &amp; 85% RH), and 250 cycles of thermal cycling test (−40 to 85 °C), the devices maintain 92.6%, 85.8%, and 96.1% of their initial efficiencies, respectively.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-Resolved Oxidation State Changes Are Key to Elucidating the Bifunctionality of Perovskite Catalysts for Oxygen Evolution and Reduction 时间分辨氧化态变化是阐明过氧化物催化剂氧进化和氧还原双功能性的关键
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-11 DOI: 10.1002/eem2.12737
Casey E. Beall, Emiliana Fabbri, Adam H. Clark, Vivian Meier, Nur Sena Yüzbasi, Benjamin H. Sjølin, Ivano E. Castelli, Dino Aegerter, Thomas Graule, Thomas J. Schmidt
{"title":"Time-Resolved Oxidation State Changes Are Key to Elucidating the Bifunctionality of Perovskite Catalysts for Oxygen Evolution and Reduction","authors":"Casey E. Beall,&nbsp;Emiliana Fabbri,&nbsp;Adam H. Clark,&nbsp;Vivian Meier,&nbsp;Nur Sena Yüzbasi,&nbsp;Benjamin H. Sjølin,&nbsp;Ivano E. Castelli,&nbsp;Dino Aegerter,&nbsp;Thomas Graule,&nbsp;Thomas J. Schmidt","doi":"10.1002/eem2.12737","DOIUrl":"10.1002/eem2.12737","url":null,"abstract":"<p>In a unified regenerative fuel cell (URFC) or reversible fuel cell, the oxygen bifunctional catalyst must switch reversibly between the oxygen reduction reaction (ORR), fuel cell mode, and the oxygen evolution reaction (OER), electrolyzer mode. However, it is often unclear what effect alternating between ORR and OER has on the electrochemical behavior and physiochemical properties of the catalyst. Herein, operando X-ray absorption spectroscopy (XAS) is utilized to monitor the continuous and dynamic evolution of the Co, Mn, and Fe oxidation states of perovskite catalysts Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> (BSCF) and La<sub>0.4</sub>Sr<sub>0.6</sub>MnO<sub>3-δ</sub> (LSM), while the potential is oscillated between reducing and oxidizing potentials with cyclic voltammetry. The results reveal the importance of investigating bifunctional catalysts by alternating between fuel cell and electrolyzer operation and highlight the limitations and challenges of bifunctional catalysts. It is shown that the requirements for ORR and OER performance are divergent and that the oxidative potentials of OER are detrimental to ORR activity. These findings are used to give guidelines for future bifunctional catalyst design. Additionally, it is demonstrated how sunlight can be used to reactivate the ORR activity of LSM after rigorous cycling.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12737","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti3C2Tx MXene-Based Composite Electrode 具有多通道离子凝胶电解质和 Ti3C2Tx MXene 复合电极协同效应的高塞贝克系数热充电超级电容器
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-11 DOI: 10.1002/eem2.12756
Zhongming Chen, Zhijian Du, La Li, Kai Jiang, Di Chen, Guozhen Shen
{"title":"High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti3C2Tx MXene-Based Composite Electrode","authors":"Zhongming Chen,&nbsp;Zhijian Du,&nbsp;La Li,&nbsp;Kai Jiang,&nbsp;Di Chen,&nbsp;Guozhen Shen","doi":"10.1002/eem2.12756","DOIUrl":"10.1002/eem2.12756","url":null,"abstract":"<p>Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics. However, the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application. In this paper, we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn<sub>2</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene composites (ZMO@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene) electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte, which realized the thermoelectric conversion and electrical energy storage at the same time. This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K<sup>−1</sup>, thermal voltage of 243 mV, and outstanding heat-to-electricity conversion efficiency of up to 6.48% at the temperature difference of 4.4 K. In addition, this device showed excellent charge–discharge cycling stability at high-temperature differences (3 K) and low-temperature differences (1 K), respectively. Connecting two thermally chargeable supercapacitor units in series, the generated output voltage of 500 mV further confirmed the stability of devices. When a single device was worn on the arm, a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable Organic Solar Cells Enabled by Simultaneous Hole and Electron Interlayer Engineering 通过同时进行空穴和电子层间工程实现稳定的有机太阳能电池
IF 13 2区 材料科学
Energy & Environmental Materials Pub Date : 2024-05-11 DOI: 10.1002/eem2.12712
Wisnu Tantyo Hadmojo, Furkan H. Isikgor, Yuanbao Lin, Zhaoheng Ling, Qiao He, Hendrik Faber, Emre Yengel, Roshan Ali, Abdus Samad, Ryanda Enggar Anugrah Ardhi, Sang Young Jeong, Han Young Woo, Udo Schwingenschlögl, Martin Heeney, Thomas D. Anthopoulos
{"title":"Stable Organic Solar Cells Enabled by Simultaneous Hole and Electron Interlayer Engineering","authors":"Wisnu Tantyo Hadmojo,&nbsp;Furkan H. Isikgor,&nbsp;Yuanbao Lin,&nbsp;Zhaoheng Ling,&nbsp;Qiao He,&nbsp;Hendrik Faber,&nbsp;Emre Yengel,&nbsp;Roshan Ali,&nbsp;Abdus Samad,&nbsp;Ryanda Enggar Anugrah Ardhi,&nbsp;Sang Young Jeong,&nbsp;Han Young Woo,&nbsp;Udo Schwingenschlögl,&nbsp;Martin Heeney,&nbsp;Thomas D. Anthopoulos","doi":"10.1002/eem2.12712","DOIUrl":"10.1002/eem2.12712","url":null,"abstract":"<p>The development of high-performance organic solar cells (OSCs) with high operational stability is essential to accelerate their commercialization. Unfortunately, our understanding of the origin of instabilities in state-of-the-art OSCs based on bulk heterojunction (BHJ) featuring non-fullerene acceptors (NFAs) remains limited. Herein, we developed NFA-based OSCs using different charge extraction interlayer materials and studied their storage, thermal, and operational stabilities. Despite the high power conversion efficiency (PCE) of the OSCs (17.54%), we found that cells featuring self-assembled monolayers (SAMs) as hole-extraction interlayers exhibited poor stability. The time required for these OSCs to reach 80% of their initial performance (T<sub>80</sub>) was only 6 h under continuous thermal stress at 85 °C in a nitrogen atmosphere and 1 h under maximum power point tracking (MPPT) in a vacuum. Inserting MoO<sub>x</sub> between ITO and SAM enhanced the T<sub>80</sub> to 50 and ~15 h after the thermal and operational stability tests, respectively, while maintaining a PCE of 16.9%. Replacing the organic PDINN electron transport layer with ZnO NPs further enhances the cells' thermal and operational stability, boosting the T<sub>80</sub> to 1000 and 170 h, respectively. Our work reveals the synergistic roles of charge-selective interlayers and device architecture in developing efficient and stable OSCs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信