{"title":"Quenched PVDF/PMMA Porous Matrix for Triboelectric Energy Harvesting and Sensing","authors":"Assem Mubarak, Bayandy Sarsembayev, Yerzhigit Serik, Abdirakhman Onabek, Zhanat Kappassov, Zhumabay Bakenov, Kazuyoshi Tsuchiya, Gulnur Kalimuldina","doi":"10.1002/eem2.12808","DOIUrl":null,"url":null,"abstract":"The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality. Through introducing innovative solutions for energy harvesting and autonomous sensing, this research presents a cost-effective strategy to enhance the performance of triboelectric nanogenerators (TENGs). The TENG was fabricated from polyvinylidene fluoride (PVDF) and <i>N</i>, <i>N′</i>-poly(methyl methacrylate) (PMMA) blend with a porous structure via a novel optimized quenching method. The developed approach results in a high <i>β</i>-phase content (85.7%) PVDF/3wt.%PMMA porous blend, known for its superior piezoelectric properties. PVDF/3wt.%PMMA modified porous TENG demonstrates remarkable electrical output, with a dielectric constant of 40 and an open-circuit voltage of approximately 600 V. The porous matrix notably increases durability, enduring over 36 000 operational cycles without performance degradation. Moreover, practical applications were explored in this research, including powering LEDs and pacemakers with a maximum power output of 750 mW m<sup>−2</sup>. Also, TENG served as a self-powered tactile sensor for robotic applications in various temperature conditions. The work highlights the potential of the PVDF/PMMA porous blend to utilize the next-generation self-powered sensors and power small electronic devices.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12808","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality. Through introducing innovative solutions for energy harvesting and autonomous sensing, this research presents a cost-effective strategy to enhance the performance of triboelectric nanogenerators (TENGs). The TENG was fabricated from polyvinylidene fluoride (PVDF) and N, N′-poly(methyl methacrylate) (PMMA) blend with a porous structure via a novel optimized quenching method. The developed approach results in a high β-phase content (85.7%) PVDF/3wt.%PMMA porous blend, known for its superior piezoelectric properties. PVDF/3wt.%PMMA modified porous TENG demonstrates remarkable electrical output, with a dielectric constant of 40 and an open-circuit voltage of approximately 600 V. The porous matrix notably increases durability, enduring over 36 000 operational cycles without performance degradation. Moreover, practical applications were explored in this research, including powering LEDs and pacemakers with a maximum power output of 750 mW m−2. Also, TENG served as a self-powered tactile sensor for robotic applications in various temperature conditions. The work highlights the potential of the PVDF/PMMA porous blend to utilize the next-generation self-powered sensors and power small electronic devices.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.