Se Jin Choi, Chan Hyeok Kim, Jeong Hyeon Kim PhD, Kang Hyeon Kim, Sang Yoon Park, Yu Jin Ko, Hosung Kang, Young Bin Kim PhD, Yu Mi Woo, Jae Young Seok, Bongchul Kang, Chang Kyu Jeong, Kwi-Il Park, Geon-Tae Hwang, Jung Hwan Park, Han Eol Lee
{"title":"Wearable Multifunctional Health Monitoring Systems Enabled by Ultrafast Flash-Induced 3D Porous Graphene","authors":"Se Jin Choi, Chan Hyeok Kim, Jeong Hyeon Kim PhD, Kang Hyeon Kim, Sang Yoon Park, Yu Jin Ko, Hosung Kang, Young Bin Kim PhD, Yu Mi Woo, Jae Young Seok, Bongchul Kang, Chang Kyu Jeong, Kwi-Il Park, Geon-Tae Hwang, Jung Hwan Park, Han Eol Lee","doi":"10.1002/eem2.70005","DOIUrl":null,"url":null,"abstract":"<p>A wearable health monitoring system is a promising device for opening the era of the fourth industrial revolution due to increasing interest in health among modern people. Wearable health monitoring systems were demonstrated by several researchers, but still have critical issues of low performance, inefficient and complex fabrication processes. Here, we present the world's first wearable multifunctional health monitoring system based on flash-induced porous graphene (FPG). FPG was efficiently synthesized via flash lamp, resulting in a large area in four milliseconds. Moreover, to demonstrate the sensing performance of FPG, a wearable multifunctional health monitoring system was fabricated onto a single substrate. A carbon nanotube-polydimethylsiloxane (CNT-PDMS) nanocomposite electrode was successfully formed on the uneven FPG surface using screen printing. The performance of the FPG-based wearable multifunctional health monitoring system was enhanced by the large surface area of the 3D-porous structure FPG. Finally, the FPG-based wearable multifunctional health monitoring system effectively detected motion, skin temperature, and sweat with a strain GF of 2564.38, a linear thermal response of 0.98 Ω °C<sup>−1</sup> under the skin temperature range, and a low ion detection limit of 10 μ<span>m</span>.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 4","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70005","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A wearable health monitoring system is a promising device for opening the era of the fourth industrial revolution due to increasing interest in health among modern people. Wearable health monitoring systems were demonstrated by several researchers, but still have critical issues of low performance, inefficient and complex fabrication processes. Here, we present the world's first wearable multifunctional health monitoring system based on flash-induced porous graphene (FPG). FPG was efficiently synthesized via flash lamp, resulting in a large area in four milliseconds. Moreover, to demonstrate the sensing performance of FPG, a wearable multifunctional health monitoring system was fabricated onto a single substrate. A carbon nanotube-polydimethylsiloxane (CNT-PDMS) nanocomposite electrode was successfully formed on the uneven FPG surface using screen printing. The performance of the FPG-based wearable multifunctional health monitoring system was enhanced by the large surface area of the 3D-porous structure FPG. Finally, the FPG-based wearable multifunctional health monitoring system effectively detected motion, skin temperature, and sweat with a strain GF of 2564.38, a linear thermal response of 0.98 Ω °C−1 under the skin temperature range, and a low ion detection limit of 10 μm.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.