Ao Xiao, Jian Wang, Xi Chen, Han Wu, Xinran Jiang, Yaqin Zhao, Zhenzhen Wu, Chen Wang, Xingfu Wei, Yannan Sheng, Jiali Niu, Yongyan Hu, Haixiang Su, Qing Liu, Lingqian Chang
{"title":"Galvanic Cell-Stimulated Mesenchymal Stem Cell Mesh for Enhanced Pelvic Organ Prolapse Treatment.","authors":"Ao Xiao, Jian Wang, Xi Chen, Han Wu, Xinran Jiang, Yaqin Zhao, Zhenzhen Wu, Chen Wang, Xingfu Wei, Yannan Sheng, Jiali Niu, Yongyan Hu, Haixiang Su, Qing Liu, Lingqian Chang","doi":"10.1002/adhm.202403603","DOIUrl":"https://doi.org/10.1002/adhm.202403603","url":null,"abstract":"<p><p>Implantation of a mesh loaded with mesenchymal stem cells (MSCs) is a common approach for the treatment of pelvic organ prolapse (POP). The mesh provides effective support to pelvic floor, enhancing muscle contraction of pelvic organs while reducing inflammation. In this study, a fully degradable mesh is designed for the treatment of POP, utilizing MSCs stimulated by a galvanic battery-powered electric field. The bioelectronic mesh consists of two parts: a galvanic cell film and a porous hydrogel loaded with MSCs. The battery film has a flexible substrate, on which Zinc and Molybdenum film electrodes form a galvanic cell that discharges at up to 1.2 V, stimulating cell proliferation and migration of the MSCs pre-loaded in the hydrogel. The hydrogel provides anchoring and growth sites for the MSCs. The bioelectronic mesh elevates the production of elasticity-related and healing-related factors, enhancing the strength and elasticity of the pelvic tissue and promoting tissue regeneration for POP repair. Compared to traditional stem cell therapy, the local stimulation strategy significantly reduces inflammation in pelvic tissues. In addition, the bioelectronic mesh completely degrades after in vivo application, which avoids risks caused by surgical removal, demonstrating good biocompatibility in the implanted mesh.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403603"},"PeriodicalIF":10.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prognosis of Cardiovascular Conditions Noninvasively Using Printable Elastomeric Electronic Skin.","authors":"Muthamil Selvan T, Titash Mondal","doi":"10.1002/adhm.202404056","DOIUrl":"https://doi.org/10.1002/adhm.202404056","url":null,"abstract":"<p><p>Lack of timely prognosis of cardiovascular condition (CVC) is resulting in increased mortality across the globe. Currently, available techniques are confined to medical facilities and need the intervention of specialists. Frequently, this impedes timely treatment, driven by socioeconomic factors. Consequently, the disease transcends toward incurable complications. In such a scenario, point-of-care diagnostic tools can help with prognosis at an early stage. Albeit there are such tools available, it is imperative to develop affordably in uncomplicated manufacturing techniques and should have simple readout and analysis modules for monitoring CVC. Accordingly, the solvent-free manufacturing of stencil printable liquid elastomer-carbon nanotube electronic skin-based strain sensor, capable of accurately detecting pulse (at different positions) and other parameters like augmentation index and stiffness index of artery related to the CVC, is reported. The Poincare plot, derived from the recorded data, measures heart rate variability, a key indicator linked to mortality. Thanks to the staggering linearity, gauge factor of 234.26, fast response time of 85 ms (measured from pulse data), and cyclic stability (over 500 cycles), assist in the ease of detection of vital parameters. Furthermore, the sensor patch demonstrates its capability to acquire pulse waves under different real-time artery conditions using cuff-based pressure applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404056"},"PeriodicalIF":10.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li-Na Zhang, Xiao-Yun Ran, Hong Zhang, Yu Zhao, Qian Zhou, Shan-Yong Chen, Cheng Yang, Xiao-Qi Yu, Kun Li
{"title":"Molecular Engineering of Xanthene Dyes with 3D Multimodal-Imaging Ability to Guide Photothermal Therapy.","authors":"Li-Na Zhang, Xiao-Yun Ran, Hong Zhang, Yu Zhao, Qian Zhou, Shan-Yong Chen, Cheng Yang, Xiao-Qi Yu, Kun Li","doi":"10.1002/adhm.202402295","DOIUrl":"10.1002/adhm.202402295","url":null,"abstract":"<p><p>Phototheranostics integrates light-based diagnostic techniques with therapeutic interventions, offering a non-invasive, precise, and swift approach for both disease detection and treatment. The efficacy of this approach hinges on the multimodal imaging potential and photothermal conversion efficiency (PCE) of phototheranostic agents (PTAs). Despite the promise, crafting multifunctional phototheranostic organic small molecules brims with challenges. In this research, four innovative xanthene-derived PTAs are synthesized by fine-tuning the donor-π-acceptor (D-π-A) system to strike a balance between radiative and nonradiative decay. The inherent robust photostability and intense fluorescence of the traditional xanthene core are preserved, meanwhile the addition of highly electron-withdrawing groups boosts the non-radiative decay rate to enhance PCE and photoacoustic imaging capabilities. Remarkably, one of the PTAs, DMBA, demonstrates an exceptional absolute fluorescence quantum yield of 2.46% in PBS, and when encapsulated into nanoparticles, it achieves a high PCE of 79.5%. Consequently, DMBA nanoparticles (DMBA-NPs) are effectively employed in fluorescence, 3D photoacoustic, and photothermal imaging-guiding tumor photothermal therapy. This represents the first instance of a multimodal phototheranostic xanthene agent achieving synergistic fluorescence and photoacoustic imaging for diagnostic purposes. Furthermore, this work paves the way for leveraging xanthene fluorophores as versatile tools in the development of multifunctional reagents.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402295"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Razan El Khaled El Faraj, Shraddha Chakraborty, Meijun Zhou, Morgan Sobol, David Thiele, Lilly M Shatford-Adams, Maximiano Correa Cassal, Anne-Kristin Kaster, Sascha Dietrich, Pavel A Levkin, Anna A Popova
{"title":"Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology.","authors":"Razan El Khaled El Faraj, Shraddha Chakraborty, Meijun Zhou, Morgan Sobol, David Thiele, Lilly M Shatford-Adams, Maximiano Correa Cassal, Anne-Kristin Kaster, Sascha Dietrich, Pavel A Levkin, Anna A Popova","doi":"10.1002/adhm.202401820","DOIUrl":"10.1002/adhm.202401820","url":null,"abstract":"<p><p>Drug-induced differential gene expression analysis (DGEA) is essential for uncovering the molecular basis of cell phenotypic changes and understanding individual tumor responses to anticancer drugs. Performing high throughput DGEA is challenging due to the high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. A novel, miniaturized, nanoliter-scale method for drug-induced DGEA is introduced, enabling high-throughput and parallel analysis of patient-derived cell drug responses, overcoming the limitations and laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA), a microscope glass slide with hydrophilic spots on a superhydrophobic background, facilitating droplet formation for cell testing. DMA allows microscopy-based phenotypic analysis, cDNA extraction, and DGEA. The procedure includes cell lysis for mRNA isolation and cDNA conversion followed by droplet pooling for qPCR analysis. In this study, the drug-induced DGEA protocol on the DMA platform is demonstrated using patient-derived chronic lymphocytic leukemia (CLL) cells. This methodology is critical for DGEA with limited cell numbers and promise for applications in functional precision oncology. This method enables molecular profiling of patient-derived samples after drug treatment, crucial for understanding individual tumor responses to anticancer drugs.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2401820"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Composite Scaffold Materials of Nanocerium Oxide Doped with Allograft Bone: Dual Optimization Based on Anti-Inflammatory Properties and Promotion of Osteogenic Mineralization.","authors":"Yuqiao Li, Yongkang Huang, Houzhi Yang, Yuxin Li, Gan Luo, Yuan Ma, Haiyang Cheng, Yubin Long, Weiwei Xia, Haiying Liu, Huayi Fang, Yaping Du, Tianwei Sun, Kaifeng Wang, Xinyun Zhai","doi":"10.1002/adhm.202403006","DOIUrl":"10.1002/adhm.202403006","url":null,"abstract":"<p><p>Spinal fusion technique is widely used in the treatment of lumbar degeneration, cervical instability, disc injury, and spinal deformity. However, it is usually accompanied by a high incidence of fusion failure and pseudoarthrosis, placing higher demands on bone implants. Therefore, materials with good biocompatibility, osteoconductivity, and even induce bone ingrowth, which can be used to improve spinal fusion rate and bone regeneration, have become a hot research topic. Here, ultra-small cerium oxide nanoparticles (CeO<sub>2</sub> NPs) are prepared and loaded onto the surface of the homograft bone surface to prepare a composite scaffold AB@PLGA/CeO<sub>2</sub>. The composite scaffold shows the competitive ability to promote osteoblast differentiation in vitro. In vivo experiments show that AB@PLGA/CeO<sub>2</sub> has a good bone enhancement effect. In particular, good biological effects of collagen fiber formation, osteogenic mineralization, and tissue repair are shown in intervertebral implant fusion. Further, transcriptome sequencing confirms that CeO<sub>2</sub> NPs promote osteogenic differentiation and mineralization by regulating extracellular matrix (ECM) and collagen formation. Meanwhile, CeO<sub>2</sub> NPs can regulate the function of the PI3K-Akt signaling pathway to exert its ability to promote osteogenic differentiation and mineralization and affect p53 and cell cycle signaling pathway to regulate osteogenic differentiation and mineralization. Hence, the proposed scaffold is a promising strategy for intervertebral fusion in the clinic.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403006"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of Somatostatin-Based Multiphase \"Core-Shell\" Coacervates as Photodynamic Biomimetic Organelles.","authors":"Wenyu Sun, Hongjie Xiong, Jiajia Yin, Wenyan Yao, Xiaohui Liu, Liu Liu, Xuemei Wang, Hui Jiang","doi":"10.1002/adhm.202403561","DOIUrl":"10.1002/adhm.202403561","url":null,"abstract":"<p><p>Biomimetic coacervates have recently attracted great interest in biomedical fields, especially for drug delivery and as protocells. However, these membraneless structures are easily coalesced and poorly targetable, limiting their real biomedical applications. Here multiphase \"core-shell\" coacervate (CSC) constructed by dsDNA and somatostatin (SST), a 14-mer cyclopeptide is designed. The CSC shows enhanced tumor targetability through SST binding to SST receptors on the tumor cells' surface. G4 quadruplex-hemin complex can be embedded in the CSC by interaction with SST, as demonstrated by molecular simulation and isothermal titration calorimetry. The G4-hemin embedded CSC can further recruit photosensitizers such as tetracarboxyphenyl porphyrin to form the CSC-GHT composite for photodynamic therapy (PDT). As photodynamic biomimetic organelles, CSC-GHT can convert oxygen to singlet oxygen (catalyzed by the catalase-mimetic activity of G4-hemin), resulting in enhanced PDT effect, which allows the inhibition of cellular migration in vitro and tumor growth in vivo. Owing to high stability, targetability, and biosafety, the proposed CSC can recruit various cargos from small dyes to large biomacromolecules (up to 430 kDa), providing promising theranostic applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403561"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiawen Li, Guidong Gong, Yue Zhang, Yanjiang Zheng, Yunxiang He, Mei Chen, Xianglian He, Xiaolan Zheng, Xue Gong, Lei Liu, Kaiyu Zhou, Zongmin Zhao, C Wyatt Shields Iv, Yimin Hua, Yifei Li, Junling Guo
{"title":"Polyphenol-Nanoengineered Monocyte Biohybrids for Targeted Cardiac Repair and Immunomodulation.","authors":"Jiawen Li, Guidong Gong, Yue Zhang, Yanjiang Zheng, Yunxiang He, Mei Chen, Xianglian He, Xiaolan Zheng, Xue Gong, Lei Liu, Kaiyu Zhou, Zongmin Zhao, C Wyatt Shields Iv, Yimin Hua, Yifei Li, Junling Guo","doi":"10.1002/adhm.202403595","DOIUrl":"10.1002/adhm.202403595","url":null,"abstract":"<p><p>Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement. Here, a nanoengineered monocyte (MO)-based biohybrid system, referred to as CTAs @MOs, for the heart-targeted delivery of combinational therapeutic agents (CTAs) containing anti-inflammatory IL-10 and cardiomyogenic miR-19a to overcome the limitation of malperfusion within the infarcted myocardium through a polyphenol-mediated interfacial assembly, is reported. Systemic administration of CTAs@MOs bypasses extensive thoracotomy and intramyocardial administration risks, leading to infarcted heart-specific accumulation and sustained release of therapeutic agents, enabling immunomodulation of the proinflammatory microenvironment and promoting cardiomyocyte proliferation in sequence. Moreover, CTAs@MOs, which serve as a cellular biohybrid-based therapy, significantly improve cardiac function as evidenced by enhanced ejection fractions, increased fractional shortening, and diminished infarct sizes. This polyphenol nanoengineered biohybrid system represents a general and potent platform for the efficient treatment of cardiovascular disorders.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403595"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy.","authors":"Yan-Qin He, Jian-Hong Tang","doi":"10.1002/adhm.202403009","DOIUrl":"10.1002/adhm.202403009","url":null,"abstract":"<p><p>Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403009"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Wang, Shanshan Jin, Yaru Guo, Lisha Zhu, Yilong Lu, Jing Li, Boon Chin Heng, Yan Liu, Xuliang Deng
{"title":"Cordycepin-Loaded Dental Pulp Stem Cell-Derived Exosomes Promote Aged Bone Repair by Rejuvenating Senescent Mesenchymal Stem Cells and Endothelial Cells.","authors":"Yu Wang, Shanshan Jin, Yaru Guo, Lisha Zhu, Yilong Lu, Jing Li, Boon Chin Heng, Yan Liu, Xuliang Deng","doi":"10.1002/adhm.202402909","DOIUrl":"10.1002/adhm.202402909","url":null,"abstract":"<p><p>Aging impairs bone marrow mesenchymal stem cell (BMSC) functions as well as associated angiogenesis which is critical for bone regeneration and repair. Hence, repairing bone defects in elderly patients poses a formidable challenge in regenerative medicine. Here, the engineered dental pulp stem cell-derived exosomes loaded with the natural derivative of adenosine Cordycepin (CY@D-exos) are fabricated by means of the intermittent ultrasonic shock, which dually rejuvenates both senescent BMSCs and endothelial cells and significantly improve bone regeneration and repair in aged animals. CY@D-exos can efficiently overcome the senescence of aged BMSCs and enhance their osteogenic differentiation by activating NRF2 signaling and maintaining heterochromatin stability. Importantly, CY@D-exos also potently overcomes the senescence of vascular endothelial cells and promotes angiogenesis. In vivo injectable gelatin methacryloyl (GelMA) hydrogels with sustained release of CY@D-exos can accelerate bone injury repair and promote new blood vessel formation in aged animals. Taken together, these results thus demonstrate that cordycepin-loaded dental pulp stem cell-derived exosomes display considerable potential to be developed as a next-generation therapeutic agent for promoting aged bone regeneration and repair.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402909"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasunari Hayashi, Taro Fujii, Seungil Kim, Takahiro Ozeki, Stephen F Badylak, Antonio D'Amore, Masato Mutsuga, William R Wagner
{"title":"Intervening to Preserve Function in Ischemic Cardiomyopathy with a Porous Hydrogel and Extracellular Matrix Composite in a Rat Myocardial Infarction Model.","authors":"Yasunari Hayashi, Taro Fujii, Seungil Kim, Takahiro Ozeki, Stephen F Badylak, Antonio D'Amore, Masato Mutsuga, William R Wagner","doi":"10.1002/adhm.202402757","DOIUrl":"10.1002/adhm.202402757","url":null,"abstract":"<p><p>Multiple hydrogels are developed for injection therapy after myocardial infarction, with some incorporating substances promoting tissue regeneration and others emphasizing mechanical effects. In this study, porosity and extracellular matrix-derived digest (ECM) are incorporated, into a mechanically optimized, thermoresponsive, degradable hydrogel (poly(N-isopropylacrylamide-co-N-vinylpyrrolidone-co-MAPLA)) and evaluate whether this biomaterial injectate can abrogate adverse remodeling in rat ischemic cardiomyopathy. After myocardial infarction, rats are divided into four groups: NP (non-porous hydrogel) without either ECM or porosity, PM (porous hydrogel) from the same synthetic copolymer with mannitol beads as porogens, and PME with porosity and ECM digest added to the synthetic copolymer. PBS injection alone is a control group. Intramyocardial injections occurred 3 days after myocardial infarction followed by serial echocardiography and histological assessments 8 weeks after infarction. Echocardiographic function and neovascularization improved in the PME group compared to the other hydrogels and PBS injection. The PME group also demonstrated improved LV geometry and macrophage polarization (toward M2) compared to PBS, whereas differences are not observed in the NP or PM groups versus control. These results demonstrate further functional improvement may be achieved in hydrogel injection therapy for ischemic cardiomyopathy by incorporating porosity and ECM digest, representing combined mechanical and biological effects.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402757"},"PeriodicalIF":10.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}