胎盘芯片上合胞体(PSoC)-福斯克林与机械诱导合胞的比较。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Ludivine Delon, Mathias Busek, Pedro Duarte Menezes, Nikolaj Gadegaard, Justyna Stokowiec, Alexey Golovin, Yuliia Boichuk, Thomas Combriat, Aleksandra Aizenshtadt, Stefan Krauss
{"title":"胎盘芯片上合胞体(PSoC)-福斯克林与机械诱导合胞的比较。","authors":"Ludivine Delon, Mathias Busek, Pedro Duarte Menezes, Nikolaj Gadegaard, Justyna Stokowiec, Alexey Golovin, Yuliia Boichuk, Thomas Combriat, Aleksandra Aizenshtadt, Stefan Krauss","doi":"10.1002/adhm.202404462","DOIUrl":null,"url":null,"abstract":"<p><p>The placenta is a key embryonic structure that separates maternal and fetal blood systems. The barrier function of the human placenta is performed by villous trophoblasts, i.e. undifferentiated cytotrophoblasts and differentiated syncytiotrophoblats, whose maturation and function are influenced by wall shear stress (WSS) from the maternal blood circulation. Most in vitro placenta models rely on cyclic adenosine monophosphate inducer forskolin (FSK) to establish a placental syncytium. Here a trophoblastic BeWo cell line is used to systematically compare the effect of FSK treatment in static culture with WSS stimulation in a pumpless, recirculating organ-on-chip. It is shown that BeWo cells undergo a similar differentiation under WSS exposure to FSK treatment. A WSS of 0.1 dyn cm<sup>-2</sup> leads to cell fusion, polarization, barrier functions, human chorionic gonadotropin (β-hCG) secretion, and increased expression of key transporters. Moreover, WSS induces favorable changes in the levels of FMS-like tyrosine kinase-1 (FLT-1) and Placental Growth Factor (PlGF) suggesting the development of a physiologically relevant placental syncytium-on-chip (PSoC) without the need for FSK. The platform is further expanded to a syncytiotrophoblast/endothelial co-culture showing physiological vascular functions under WSS. The forskolin-free PSoC presented here represents the first pumpless recirculating and scalable platform for physiological placental studies and drug testing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404462"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Placental Syncytium-on-Chip (PSoC)-Comparison of Forskolin or Mechanical Induced-Syncytialization.\",\"authors\":\"Ludivine Delon, Mathias Busek, Pedro Duarte Menezes, Nikolaj Gadegaard, Justyna Stokowiec, Alexey Golovin, Yuliia Boichuk, Thomas Combriat, Aleksandra Aizenshtadt, Stefan Krauss\",\"doi\":\"10.1002/adhm.202404462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The placenta is a key embryonic structure that separates maternal and fetal blood systems. The barrier function of the human placenta is performed by villous trophoblasts, i.e. undifferentiated cytotrophoblasts and differentiated syncytiotrophoblats, whose maturation and function are influenced by wall shear stress (WSS) from the maternal blood circulation. Most in vitro placenta models rely on cyclic adenosine monophosphate inducer forskolin (FSK) to establish a placental syncytium. Here a trophoblastic BeWo cell line is used to systematically compare the effect of FSK treatment in static culture with WSS stimulation in a pumpless, recirculating organ-on-chip. It is shown that BeWo cells undergo a similar differentiation under WSS exposure to FSK treatment. A WSS of 0.1 dyn cm<sup>-2</sup> leads to cell fusion, polarization, barrier functions, human chorionic gonadotropin (β-hCG) secretion, and increased expression of key transporters. Moreover, WSS induces favorable changes in the levels of FMS-like tyrosine kinase-1 (FLT-1) and Placental Growth Factor (PlGF) suggesting the development of a physiologically relevant placental syncytium-on-chip (PSoC) without the need for FSK. The platform is further expanded to a syncytiotrophoblast/endothelial co-culture showing physiological vascular functions under WSS. The forskolin-free PSoC presented here represents the first pumpless recirculating and scalable platform for physiological placental studies and drug testing.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2404462\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202404462\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404462","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

胎盘是分离母体和胎儿血液系统的关键胚胎结构。人胎盘的屏障功能是由绒毛滋养细胞完成的,即未分化的细胞滋养细胞和分化的合胞滋养细胞,其成熟和功能受母体血液循环的壁剪切应力(WSS)的影响。大多数体外胎盘模型依赖环磷酸腺苷诱导剂福斯克林(FSK)来建立胎盘合胞体。本研究使用滋养细胞BeWo细胞系系统地比较了静态培养中FSK处理与无泵循环器官芯片中WSS刺激的效果。结果表明,在WSS暴露于FSK处理下,BeWo细胞经历了类似的分化。0.1 dyn cm-2的WSS导致细胞融合、极化、屏障功能、人绒毛膜促性腺激素(β-hCG)分泌和关键转运蛋白表达增加。此外,WSS诱导了fms样酪氨酸激酶-1 (FLT-1)和胎盘生长因子(PlGF)水平的有利变化,表明在不需要FSK的情况下发育了生理上相关的胎盘合胞体芯片(PSoC)。该平台进一步扩展为在WSS下显示生理血管功能的合胞滋养细胞/内皮共培养。这里介绍的无福斯克林PSoC代表了生理胎盘研究和药物测试的第一个无泵再循环和可扩展平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Placental Syncytium-on-Chip (PSoC)-Comparison of Forskolin or Mechanical Induced-Syncytialization.

The placenta is a key embryonic structure that separates maternal and fetal blood systems. The barrier function of the human placenta is performed by villous trophoblasts, i.e. undifferentiated cytotrophoblasts and differentiated syncytiotrophoblats, whose maturation and function are influenced by wall shear stress (WSS) from the maternal blood circulation. Most in vitro placenta models rely on cyclic adenosine monophosphate inducer forskolin (FSK) to establish a placental syncytium. Here a trophoblastic BeWo cell line is used to systematically compare the effect of FSK treatment in static culture with WSS stimulation in a pumpless, recirculating organ-on-chip. It is shown that BeWo cells undergo a similar differentiation under WSS exposure to FSK treatment. A WSS of 0.1 dyn cm-2 leads to cell fusion, polarization, barrier functions, human chorionic gonadotropin (β-hCG) secretion, and increased expression of key transporters. Moreover, WSS induces favorable changes in the levels of FMS-like tyrosine kinase-1 (FLT-1) and Placental Growth Factor (PlGF) suggesting the development of a physiologically relevant placental syncytium-on-chip (PSoC) without the need for FSK. The platform is further expanded to a syncytiotrophoblast/endothelial co-culture showing physiological vascular functions under WSS. The forskolin-free PSoC presented here represents the first pumpless recirculating and scalable platform for physiological placental studies and drug testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信