Current BiologyPub Date : 2024-12-02Epub Date: 2024-10-30DOI: 10.1016/j.cub.2024.10.015
Mariana Maia-Gil, Maria Gorjão, Roman Belousov, Jaime A Espina, João Coelho, Juliette Gouhier, Ana P Ramos, Elias H Barriga, Anna Erzberger, Caren Norden
{"title":"Nuclear deformability facilitates apical nuclear migration in the developing zebrafish retina.","authors":"Mariana Maia-Gil, Maria Gorjão, Roman Belousov, Jaime A Espina, João Coelho, Juliette Gouhier, Ana P Ramos, Elias H Barriga, Anna Erzberger, Caren Norden","doi":"10.1016/j.cub.2024.10.015","DOIUrl":"10.1016/j.cub.2024.10.015","url":null,"abstract":"<p><p>Nuclear positioning is a crucial aspect of cell and developmental biology. One example is the apical movement of nuclei in neuroepithelia before mitosis, which is essential for proper tissue formation. While the cytoskeletal mechanisms that drive nuclei to the apical side have been explored, the influence of nuclear properties on apical nuclear migration is less understood. Nuclear properties, such as deformability, can be linked to lamin A/C expression levels, as shown in various in vitro studies. Interestingly, many nuclei in early development, including neuroepithelial nuclei, express only low levels of lamin A/C. Therefore, we investigated whether increased lamin A expression in the densely packed zebrafish retinal neuroepithelium affects nuclear deformability and, consequently, migration phenomena. We found that overexpressing lamin A in retinal nuclei increases nuclear stiffness, which in turn indeed impairs apical nuclear migration. Interestingly, nuclei that do not overexpress lamin A but are embedded in a stiffer lamin A-overexpressing environment also exhibit impaired apical nuclear migration, indicating that these effects can be cell non-autonomous. Additionally, in the less crowded hindbrain neuroepithelium, only minor effects on apical nuclear migration are observed. Together, this suggests that the material properties of the nucleus influence nuclear movements in a tissue-dependent manner.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5429-5443.e8"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02Epub Date: 2024-11-05DOI: 10.1016/j.cub.2024.10.005
Carla C M Arce, Ricardo A R Machado, Marine Mamin, Gaétan Glauser, Pamela Bruno, Betty Benrey, Matthias Erb, Christelle A M Robert, Ted C J Turlings
{"title":"The polyvalent sequestration ability of an economically important beetle.","authors":"Carla C M Arce, Ricardo A R Machado, Marine Mamin, Gaétan Glauser, Pamela Bruno, Betty Benrey, Matthias Erb, Christelle A M Robert, Ted C J Turlings","doi":"10.1016/j.cub.2024.10.005","DOIUrl":"10.1016/j.cub.2024.10.005","url":null,"abstract":"<p><p>Many specialized herbivorous insects sequester single classes of toxic secondary metabolites from their host plants as protection against natural enemies. If and how herbivores can use multiple classes of plant toxins across the large chemical diversity of plants for self-protection is unknown. We show that the polyphagous adults of the beetle Diabrotica virgifera are capable of selectively accumulating benzoxazinoids, cucurbitacins, and glucosinolates but not cyanogenic glycosides. Female beetles transfer the sequestered defense metabolites into their eggs, protecting them against generalist predators. Eggs containing a mixture of toxins are better protected than eggs with individual toxins. This work shows how herbivores can exploit plant chemical diversity to their own benefit as a novel adaptive mechanism that contributes to the structuring of multitrophic interaction networks.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5417-5428.e4"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02Epub Date: 2024-11-15DOI: 10.1016/j.cub.2024.10.045
Clarice A Diebold, Jennifer Lawlor, Kathryne Allen, Grace Capshaw, Megan G Humphrey, Diego Cintron-De Leon, Kishore V Kuchibhotla, Cynthia F Moss
{"title":"Rapid sensorimotor adaptation to auditory midbrain silencing in free-flying bats.","authors":"Clarice A Diebold, Jennifer Lawlor, Kathryne Allen, Grace Capshaw, Megan G Humphrey, Diego Cintron-De Leon, Kishore V Kuchibhotla, Cynthia F Moss","doi":"10.1016/j.cub.2024.10.045","DOIUrl":"10.1016/j.cub.2024.10.045","url":null,"abstract":"<p><p>Echolocating bats rely on rapid processing of auditory information to guide moment-to-moment decisions related to echolocation call design and flight path selection. The fidelity of sonar echoes, however, can be disrupted in natural settings due to occlusions, noise, and conspecific jamming signals. Behavioral sensorimotor adaptation to external blocks of relevant cues has been studied extensively, but little is known about adaptations that mitigate internal sensory flow interruption. How do bats modify their sensory-guided behaviors in natural tasks when central auditory processing is interrupted? Here, we induced internal sensory interruptions by reversibly inactivating excitatory neurons in the inferior colliculus (IC) using ligand-activated inhibitory designer receptors exclusively activated by designer drugs (DREADDs). Bats were trained to navigate through one of three open windows in a curtain to obtain a food reward, while their echolocation and flight behaviors were quantified with synchronized ultrasound microphone and stereo video recordings. Under control conditions, bats reliably steered through the open window, only occasionally contacting the curtain edge. Suppressing IC excitatory activity elevated hearing thresholds, disrupted overall performance in the task, increased the frequency of curtain contact, and led to striking compensatory sensorimotor adjustments. DREADDs-treated bats modified flight trajectories to maximize returning echo information and adjusted sonar call design to boost detection of obstacles. Sensorimotor adaptations appeared immediately and did not change over successive trials, suggesting that these behavioral adaptations are mediated through existing neural circuitry. Our findings highlight the remarkable rapid adaptive strategies bats employ to compensate for internal sensory interruptions to effectively navigate their environments.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5507-5517.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02Epub Date: 2024-11-18DOI: 10.1016/j.cub.2024.10.023
David William Elliott Hone, Adam Fitch, Stefan Selzer, René Lauer, Bruce Lauer
{"title":"A new and large monofenestratan reveals the evolutionary transition to the pterodactyloid pterosaurs.","authors":"David William Elliott Hone, Adam Fitch, Stefan Selzer, René Lauer, Bruce Lauer","doi":"10.1016/j.cub.2024.10.023","DOIUrl":"10.1016/j.cub.2024.10.023","url":null,"abstract":"<p><p>For over a century, there was a major gap in our understanding of the evolution of the flying Mesozoic reptiles, the pterosaurs, with a major morphological gap between the early forms and the derived pterodactyloids.<sup>1</sup> Recent discoveries have found a cluster of intermediate forms that have the head and neck of the pterodactyloids but the body of the early grade,<sup>2</sup> yet this still leaves fundamental gaps between these intermediates and both earlier and more derived pterosaurs. Here, we describe a new and large Jurassic pterosaur, Skiphosoura bavarica gen. et sp. nov., preserved in three dimensions, that helps bridge the gap between current intermediate pterosaurs and the pterodactyloids. A new phylogeny shows that there is a general progression of key characteristics of increasing head size, increasing length of neck and wing metacarpal, modification to the fifth toe that supports the rear wing membrane, and gradual reduction in tail length and complexity from earlier pterosaurs into the first pterodactyloids. This also shows a clear evolution of the increasing terrestrial competence of derived pterosaurs. Furthermore, this closes gaps between the intermediates and their ancestors and descendants, and it firmly marks the rhamphorhynchines and ctenochasmatid clades as, respectively, being the closest earliest and latest groups to this succession of transitional forms.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5607-5614.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02Epub Date: 2024-11-20DOI: 10.1016/j.cub.2024.10.034
William H Lewis, Giulia Paris, Girish Beedessee, Ludek Kořený, Victor Flores, Tom Dendooven, Benoit Gallet, Daniel P Yee, Simon Lam, Johan Decelle, Ben F Luisi, Ross F Waller
{"title":"Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts.","authors":"William H Lewis, Giulia Paris, Girish Beedessee, Ludek Kořený, Victor Flores, Tom Dendooven, Benoit Gallet, Daniel P Yee, Simon Lam, Johan Decelle, Ben F Luisi, Ross F Waller","doi":"10.1016/j.cub.2024.10.034","DOIUrl":"10.1016/j.cub.2024.10.034","url":null,"abstract":"<p><p>The plastids of photosynthetic organisms on land are predominantly \"primary plastids,\" derived from an ancient endosymbiosis of a cyanobacterium. Conversely, the plastids of marine photosynthetic organisms were mostly gained through subsequent endosymbioses of photosynthetic eukaryotes generating so-called \"complex plastids.\" The plastids of the major eukaryotic lineages-cryptophytes, haptophytes, ochrophytes, dinoflagellates, and apicomplexans-were posited to derive from a single secondary endosymbiosis of a red alga in the \"chromalveloate\" hypothesis. Subsequent phylogenetic resolution of eukaryotes has shown that separate events of plastid acquisition must have occurred to account for this distribution of plastids. However, the number of such events and the donor organisms for the new plastid endosymbioses are still not resolved. A perceived bottleneck of endosymbiotic plastid gain is the development of protein targeting from the hosts into the new plastids, and this supposition has often driven hypotheses toward minimizing the number of plastid-gain events to explain plastid distribution in eukaryotes. But how plastid-protein-targeting is established for new endosymbionts is often unclear, which makes it difficult to assess the likelihood of plastid transfers between lineages. Here, we show that Kareniaceae dinoflagellates, which possess complex plastids known to be derived from haptophytes, acquired all the necessary protein import machinery from these haptophytes. Furthermore, cryo-electron tomography revealed that no additional membranes were added to the Kareniaceae complex plastid during serial endosymbiosis, suggesting that the haptophyte-derived import processes were sufficient. Our analyses suggest that complex red plastids are preadapted for horizontal transmission, potentially explaining their widespread distribution in algal diversity.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5494-5506.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02Epub Date: 2024-10-25DOI: 10.1016/j.cub.2024.09.083
Stephanie Theves, Theo A J Schäfer, Volker Reisner, William de Cothi, Caswell Barry
{"title":"Category boundaries modulate memory in a place-cell-like manner.","authors":"Stephanie Theves, Theo A J Schäfer, Volker Reisner, William de Cothi, Caswell Barry","doi":"10.1016/j.cub.2024.09.083","DOIUrl":"10.1016/j.cub.2024.09.083","url":null,"abstract":"<p><p>Concepts describe how instances of the same kind are related, enabling the categorization and interpretation of new information.<sup>1</sup><sup>,</sup><sup>2</sup> How concepts are represented is a longstanding question. Category boundaries have been considered defining features of concept representations, which can guide categorical inference,<sup>3</sup> with fMRI evidence showing category-boundary signals in the hippocampus.<sup>4</sup><sup>,</sup><sup>5</sup> The underlying neural mechanism remains unclear. The hippocampal-entorhinal system, known for its spatially tuned neurons that form cognitive maps of space,<sup>6</sup><sup>,</sup><sup>7</sup> may support conceptual knowledge formation, with place cells encoding locations in conceptual space.<sup>4</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup> Physical boundaries anchor spatial representations and boundary shifts affect place and grid fields,<sup>12</sup><sup>,</sup><sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup> as well as human spatial memory,<sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup> along manipulated dimensions. These place cell responses are likely driven by boundary vector cells, which respond to boundaries at specific allocentric distances and directions,<sup>20</sup><sup>,</sup><sup>21</sup><sup>,</sup><sup>22</sup><sup>,</sup><sup>23</sup> the neural correlates of which have been identified in the subiculum and entorhinal cortex<sup>20</sup><sup>,</sup><sup>24</sup><sup>,</sup><sup>25</sup>. We hypothesize similar patterns of memory adaptations in response to shifting category boundaries. Our findings show that after category boundary shifts, participants' memory for category exemplars distorts along the changed dimension, mirroring place field deformations. We demonstrate that the boundary vector cell model of place cell firing best accounts for these distortions compared with alternative geometric explanations. Our study highlights a role of category boundaries in human cognition and establishes a new complementary link between hippocampal coding properties with respect to boundaries and human concept representation, bridging spatial and conceptual domains.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5546-5553.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02Epub Date: 2024-11-04DOI: 10.1016/j.cub.2024.10.016
Zheyi Ni, Connor Neifert, Arturo Rosete, Abdalla M Albeely, Yu Yang, Marta Pratelli, Michael Brecht, Ann M Clemens
{"title":"Tactile mechanisms and afferents underlying the rat pup transport response.","authors":"Zheyi Ni, Connor Neifert, Arturo Rosete, Abdalla M Albeely, Yu Yang, Marta Pratelli, Michael Brecht, Ann M Clemens","doi":"10.1016/j.cub.2024.10.016","DOIUrl":"10.1016/j.cub.2024.10.016","url":null,"abstract":"<p><p>Juvenile rodents and other altricial mammals react with calming, immobility, and postural modifications to parental pickup, a set of behaviors referred to as the transport response.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup> Here, we investigate sensory mechanisms underlying the rat transport response. Grasping rat pups in anterior neck positions evokes strong immobility and folding up of feet, whereas more posterior grasping has lesser effects on immobility and foot position. Transport responses are enhanced by slow (1 Hz), and even more so by fast (4 Hz), gentle shaking and translation, features consistent with parental transport. With lateral grasping, the forepaw below the grasping position points downward and the forepaw lateral to the grasping position points upward and medially. Such forepaw adjustments put the pup's center of gravity below the grasping point, optimizing pup transportability. Tactile stimuli on the back, belly, tail, whisker, dorsal forepaws, and dorsal hind-paws do not significantly affect behavior of anterior-neck-held pups. Instead, ground contact, or paw stimulation consistent with ground contact, disrupts transport responses. We identify afferents mediating transport response by examining membrane labeling with FM 1-43<sup>6</sup> following anterior neck grasping. We observe a dense innervation of the anterior-neck-skin region (∼30 terminals/mm<sup>2</sup>). We find an age-related decrease of cytochrome oxidase reactivity in the rat somatosensory cortical neck representation, a possible correlate to developmental decrease in pup transport response. We conclude that anterior neck grasping and loss of ground contact trigger calming and postural adjustments for parental transport in rat pups, responses putatively driven from the densely innervated anterior neck skin.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5595-5601.e2"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02Epub Date: 2024-11-20DOI: 10.1016/j.cub.2024.10.049
Sophie Peterson, Jose Chavira, Jesus Alejandro Garcia Arango, David Seamans, Emma D Cimino, Ronald Keiflin
{"title":"Partially dissociable roles of the orbitofrontal cortex and dorsal hippocampus in context-dependent hierarchical associations.","authors":"Sophie Peterson, Jose Chavira, Jesus Alejandro Garcia Arango, David Seamans, Emma D Cimino, Ronald Keiflin","doi":"10.1016/j.cub.2024.10.049","DOIUrl":"10.1016/j.cub.2024.10.049","url":null,"abstract":"<p><p>Reward cues are often ambiguous; what is good in one context is not necessarily good in another. To solve this ambiguity, animals form hierarchical associations in which the context gates the retrieval of appropriate cue-evoked memories. These hierarchical associations regulate cue-elicited behavior and influence subsequent learning, promoting the inference of context-dependency. The orbitofrontal cortex (OFC) and dorsal hippocampus (DH) are both proposed to encode a \"cognitive map\" encompassing hierarchical, context-dependent associations. However, OFC- and DH-specific contributions to the different functional properties of hierarchical associations remain controversial. Using chemogenetic inactivation in rats, we show that the OFC is essential to both properties of hierarchical associations (performance regulation and learning bias). In contrast, DH's role appears limited to the contextual learning bias conferred by hierarchical associations. This work establishes the OFC as a critical orchestrator of hierarchical associations and provides insights into the extended circuits mediating the functional properties of these associations.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5532-5545.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02DOI: 10.1016/j.cub.2024.10.051
Xiaofang Huang, Jean-Ju Chung
{"title":"Fertilization and evolution: AI-powered search finds a missing link in sperm-egg interaction.","authors":"Xiaofang Huang, Jean-Ju Chung","doi":"10.1016/j.cub.2024.10.051","DOIUrl":"https://doi.org/10.1016/j.cub.2024.10.051","url":null,"abstract":"<p><p>Fertilization starts life, yet the details of sperm-egg binding and fusion remain mysterious. A recent study sheds new light on this intricate process, offering key insights into its molecular workings and evolutionary significance.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":"34 23","pages":"R1169-R1172"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current BiologyPub Date : 2024-12-02DOI: 10.1016/j.cub.2024.10.056
Jennifer D Ryan
{"title":"Memory: Using the past to anticipate the future.","authors":"Jennifer D Ryan","doi":"10.1016/j.cub.2024.10.056","DOIUrl":"https://doi.org/10.1016/j.cub.2024.10.056","url":null,"abstract":"<p><p>Memories can be decoded from brain responses and eye movements. A combined electroencephalogram-eyetracking study now shows that learning is marked by dynamic shifts in brain patterns and eye movements that go from remembering the past to anticipating the future.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":"34 23","pages":"R1177-R1179"},"PeriodicalIF":8.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}