{"title":"Neofunctionalization of VAMP7 opened up a plant-unique vacuolar transport pathway.","authors":"Masaru Fujimoto, Yutaro Shimizu, Yoko Ito, Kazuo Ebine, Naoki Minamino, Takehiko Kanazawa, Yoichiro Fukao, Akihiko Nakano, Tomohiro Uemura, Takashi Ueda","doi":"10.1016/j.cub.2025.04.062","DOIUrl":null,"url":null,"abstract":"<p><p>Each eukaryotic cell possesses a specialized membrane trafficking system that emerged through paralogous expansion followed by the neofunctionalization of trafficking machinery components, including soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, during evolution. We discovered that the acquisition of an acidic insertion in the polypeptide converted the secretory R-SNARE vesicle-associated membrane protein (VAMP)72 into a major component of plant vacuolar transport. The moderately acidic insertion, originating from alternative splicing in the common ancestor of zygnematophytes and embryophytes, conferred binding ability to the clathrin adapter protein complex-4 (AP-4) at the trans-Golgi network (TGN), partially redirecting the VAMP72 protein from the secretory to the vacuolar transport pathway. Increased acidity of the insertion in angiosperms further reinforced the interaction with AP-4, leading VAMP727 to discrete zoning during sorting at the TGN and a definitive conversion to endosomal localization. This stepwise neofunctionalization of VAMP72 provided an option for the development of the intricate and complex vacuolar transport system in extant angiosperms.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.04.062","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Each eukaryotic cell possesses a specialized membrane trafficking system that emerged through paralogous expansion followed by the neofunctionalization of trafficking machinery components, including soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, during evolution. We discovered that the acquisition of an acidic insertion in the polypeptide converted the secretory R-SNARE vesicle-associated membrane protein (VAMP)72 into a major component of plant vacuolar transport. The moderately acidic insertion, originating from alternative splicing in the common ancestor of zygnematophytes and embryophytes, conferred binding ability to the clathrin adapter protein complex-4 (AP-4) at the trans-Golgi network (TGN), partially redirecting the VAMP72 protein from the secretory to the vacuolar transport pathway. Increased acidity of the insertion in angiosperms further reinforced the interaction with AP-4, leading VAMP727 to discrete zoning during sorting at the TGN and a definitive conversion to endosomal localization. This stepwise neofunctionalization of VAMP72 provided an option for the development of the intricate and complex vacuolar transport system in extant angiosperms.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.