Drug Development and Industrial Pharmacy最新文献

筛选
英文 中文
Formation of self-assembled polyelectrolyte complex derived from BSA and nanogels: a study to optimize processing parameters and preserve protein integrity.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-20 DOI: 10.1080/03639045.2025.2479758
Jahanzeb Mudassir, Aamir Jalil, Khizar Abbas, Yusrida Darwis
{"title":"Formation of self-assembled polyelectrolyte complex derived from BSA and nanogels: a study to optimize processing parameters and preserve protein integrity.","authors":"Jahanzeb Mudassir, Aamir Jalil, Khizar Abbas, Yusrida Darwis","doi":"10.1080/03639045.2025.2479758","DOIUrl":"10.1080/03639045.2025.2479758","url":null,"abstract":"<p><strong>Objective: </strong>The aim of this work was to identify, optimize, and use nondestructive process to develop nano-formulation using polyelectrolyte complexation (PEC) between polymeric nanocarrier and bovine serum albumin.</p><p><strong>Significance: </strong>Proteins are mostly degraded during preparation and loading into nano-carriers which hinders success in protein delivery.</p><p><strong>Method: </strong>Herein, novel PEC consisting of model protein BSA and nanogels (NGs), were prepared to form self-assembled polyelectrolyte nanocomplexes <b>(</b>BSA/NGs-PEC). The BSA/NGs-PEC were obtained by mixing BSA and nanogels at various weight ratios (1:2, 1:4, 1:5, 1:6, 1:8, 1:10), pH values of solution (1.2, 4.0, 6.0), incubation time (2, 4, 6, 8 h), and stirring rate (without, 100, 200 rpm). The prepared PEC were evaluated for particle size (PS), polydispersity index (PDI), zeta potential (ZP), and percentage of complexation efficiency (%CE). To study insights into structural integrity and biological activity, the SDS-PAGE and esterase activity assay was performed on BSA released from final optimized formulation.</p><p><strong>Results: </strong>The optimized parameters were BSA/nanogels mixing ratios at 1:8, pH of complex-forming medium at 4.0, incubation time of 6 h, and stirring rate at 100 rpm. The SDS-PAGE and esterase activity assay revealed that the primary structure and bioactivity, respectively, of BSA was still intact.</p><p><strong>Conclusion: </strong>The results suggest that current scheme for optimization has considerable potential for creating protein-based delivery system by using PEC <i>via</i> electrostatic interaction.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glimepiride/hydroxypropyl-β-cyclodextrin inclusion compound: preparation, characterization, and evaluation.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-19 DOI: 10.1080/03639045.2025.2479748
Xin Quan, Shurui Wang, Jiamin Lu, Xingyi Zhu, Yunfen Hua
{"title":"Glimepiride/hydroxypropyl-β-cyclodextrin inclusion compound: preparation, characterization, and evaluation.","authors":"Xin Quan, Shurui Wang, Jiamin Lu, Xingyi Zhu, Yunfen Hua","doi":"10.1080/03639045.2025.2479748","DOIUrl":"10.1080/03639045.2025.2479748","url":null,"abstract":"<p><strong>Objective: </strong>To enhance solubility and bioavailability of GM, an inclusion compound of glimepiride/hydroxypropyl-β-cyclodextrin (GM/HP-β-CD) was prepared using mechanical ball milling.</p><p><strong>Significance: </strong>Based on response surface optimization for the ball milling preparation of the inclusion compound, this study investigates its <i>in vitro</i> and <i>in vivo</i> release and pharmacokinetics.</p><p><strong>Methods: </strong>GM/HP-β-CD inclusion compound was prepared by optimized ball milling based on response surface methodology and characterized using powder x-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy, and the stability of the compound was studied. In addition, GM/HP-β-CD inclusion compound's <i>in vitro</i> release and <i>in vivo</i> release assays were performed.</p><p><strong>Results: </strong>Optimal ball milling conditions for a 1:1 molar ratio of GM/HP-β-CD were a milling speed of 296 rpm, a milling time of 88 min, and a filling rate of 17.7%. Solubility and dissolution rate experiments indicated that the solubility of the GM/HP-β-CD inclusion compound was 20 times higher than that of GM, and the dissolution rate was 12.7 times faster. Additionally, the thermal stability and photostability of the inclusion compound were improved. <i>In vivo</i> pharmacokinetics and pharmacodynamics studies showed that, compared to GM, the GM/HP-β-CD inclusion compound shortened the T<sub>max</sub> by 1 h, increased the maximum plasma concentration by nearly 3.5 times, and significantly enhanced bioavailability.</p><p><strong>Conclusion: </strong>GM/HP-β-CD inclusion compound demonstrates potential for developing sustained-release formulations, thereby prolonging the hypoglycemic effect of GM, reducing dosing frequency, and improving patient compliance with oral administration.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-11"},"PeriodicalIF":2.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of the manufacturing process of a pediatric omeprazole enteric pellets suspension: Full Factorial Design.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-14 DOI: 10.1080/03639045.2025.2476651
Khadija Rouaz-El-Hajoui, Pilar Pérez-Lozano, Àlex Fraschi-Nieto, Xavier Mula-Roldán, Marc Suñé-Pou, Blanca Chiclana-Rodríguez, Josep María Suñé-Negre, Encarnación García-Montoya
{"title":"Optimization of the manufacturing process of a pediatric omeprazole enteric pellets suspension: Full Factorial Design.","authors":"Khadija Rouaz-El-Hajoui, Pilar Pérez-Lozano, Àlex Fraschi-Nieto, Xavier Mula-Roldán, Marc Suñé-Pou, Blanca Chiclana-Rodríguez, Josep María Suñé-Negre, Encarnación García-Montoya","doi":"10.1080/03639045.2025.2476651","DOIUrl":"10.1080/03639045.2025.2476651","url":null,"abstract":"<p><strong>Objective: </strong>The purpose of the present study was to apply the design of experiments (DoE) to develop an omeprazole enteric pellets suspension for use in the pediatric population.</p><p><strong>Methodology: </strong>This experimental study employed a Full Factorial Design for drug development, encompassing three factors (Aerosil<sup>®</sup> R972, cetostearyl alcohol, and Span 80) at two levels (2% and 6% for factor A (Aerosil<sup>®</sup> R972) and 2% and 4% for factors B and C (cetostearyl alcohol and Span 80, respectively)).</p><p><strong>Results: </strong>Following the statistical optimization, the suspension F10 was formulated and subjected to a stability study for one month. The dissolution test results were suboptimal, achieving only an 22% release. Subsequently, eight additional suspensions were devised using hydrophilic oily vehicles (Labraphac Hydrophile WL 1219, Labrafil M2125 CS, and Labrafil M 1944 CS) and excipients (Gelucire 44/14 and Aerosil<sup>®</sup> 200) to enhance the dissolution profile. Suspension F17 showed over 75% within 30 min, displaying superior sedimentation time when compared to all other formulations, along with effortless resuspension.</p><p><strong>Conclusion: </strong>The findings suggest that the optimal vehicle for the administration of omeprazole enteric pellets in suspension is the formulation comprising Labrafil M 1944 CS, Span 80, and Aerosil<sup>®</sup> 200. This study has paved the way for an oily suspension vehicle, opening new avenues of research for developing pediatric omeprazole formulations that fulfill gastro-resistance requirements.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143566306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization and assessment of three generation solid dispersion for enhancement of solubility and dissolution for montelukast sodium.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-13 DOI: 10.1080/03639045.2025.2477722
Kirti Rashmi, Kaushiki Ash, Abhimanyu Dev
{"title":"Optimization and assessment of three generation solid dispersion for enhancement of solubility and dissolution for montelukast sodium.","authors":"Kirti Rashmi, Kaushiki Ash, Abhimanyu Dev","doi":"10.1080/03639045.2025.2477722","DOIUrl":"10.1080/03639045.2025.2477722","url":null,"abstract":"<p><strong>Objective: </strong>To enhance the solubility of Montelukast sodium using three generation polymers by solid dispersion method.</p><p><strong>Material and method: </strong>Montelukast sodium with selected generation of carriers were used for phase solubility and to optimize the stoichiometric ratio for the preparation of SD with MS. Various characterization techniques (FTIR, DSC and XRD) have been used to evaluate the MS-SD formulations with selected hydrophilic carriers. Dissolution and stability study were also investigated.</p><p><strong>Result and discussion: </strong>The two best-selected formulations (MS-PVP & MS-HPMC SD) have shown the highest dissolution profile as compared to pure drug, physical mixture and commercially available marketed product (Montel-10, Cipla). The FTIR, DSC and XRD results of these SD formulations have shown interaction between drug and polymers, decrease in enthalpy compared to the drug and amorphous behavior respectively. Finally, MS-PVP & MS-HPMC SD formulations have shown good stability for one-month period under accelerated storage condition.</p><p><strong>Conclusion: </strong>The study showed increase in solubility of Montelukast sodium with second generation polymers (PVP & HPMC) in comparison to pure drug as well as marketed formulation.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the potential of mucoadhesive buccal films in geriatric medicine.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-07 DOI: 10.1080/03639045.2025.2467329
Jasmine Southward, Fang Liu, Sam R Aspinall, Tochukwu C Okwuosa
{"title":"Exploring the potential of mucoadhesive buccal films in geriatric medicine.","authors":"Jasmine Southward, Fang Liu, Sam R Aspinall, Tochukwu C Okwuosa","doi":"10.1080/03639045.2025.2467329","DOIUrl":"10.1080/03639045.2025.2467329","url":null,"abstract":"<p><p>As the global demographic shifts toward an aging society, the geriatric patient population is steadily increasing. These patients often suffer from comorbidities and require numerous oral medications, which can be especially challenging for dysphagic geriatric patients. Mucoadhesive buccal films (MBFs) seem promising and could reduce pill burden, simplify administration, and enable individualized drug therapy. This review aims to explore the age-related changes in the oral cavity and their impact on MBF delivery, including potential strategies to overcome these age-related barriers to drug delivery. It was observed that aging impacts the oral mucosa as well the properties of the saliva. There are several studies in the application of buccal films including the use of a wide range of permeation enhancers. The 3D printing of buccal films seems to introduce dosing flexibility to buccal film manufacturing.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-21"},"PeriodicalIF":2.4,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Box-Behnken based furosemide-nanostructured lipid carriers (NLCs) delivery system for improving oral bioavailability.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-01 Epub Date: 2025-02-04 DOI: 10.1080/03639045.2025.2460062
Muzzamil Ilyas, Asim Ur Rehman, Muhammad Tayyab, Marya Nawaz Malik, Naveed Ahmed, Humaira Fatima
{"title":"Box-Behnken based furosemide-nanostructured lipid carriers (NLCs) delivery system for improving oral bioavailability.","authors":"Muzzamil Ilyas, Asim Ur Rehman, Muhammad Tayyab, Marya Nawaz Malik, Naveed Ahmed, Humaira Fatima","doi":"10.1080/03639045.2025.2460062","DOIUrl":"10.1080/03639045.2025.2460062","url":null,"abstract":"<p><strong>Objective: </strong>The fabrication of furosemide (FSM) with enhanced oral bioavailability and encapsulation was achieved using a nanostructured lipid carriers (NLCs) drug delivery system.</p><p><strong>Significance: </strong>The uniform drug distribution is a barrier due to its low dose. The lipid-based delivery system was selected based on its poor solubility and permeability, limiting its poor partitioning and solubility in water-based polymeric delivery systems. The lipophilicity of the FSM makes it favorable to partition with triglyceride-based Compritol 888 ATO and oleic acid with minimized drug expulsion, high drug payload, and sustained release over extended time frames.</p><p><strong>Methods: </strong>The Organic and aqueous phases of the microemulsion were stabilized using Tween 80, a hydrophilic surfactant. Box-Behnken design-based optimization was done using alteration in various formulation variables to obtain nano-formulation with the lowest particle size and polydispersity, maximal zeta potential and entrapment efficiency.</p><p><strong>Results: </strong>Design-Expert yielded several optimized formulations with the desirability function. Maximum desirability was obtained at a particle size of around 178 nm, a surface charge of -19.6 mV, and an EE of above 85%.The <i>in vitro</i> release profile depicted 86.5% of cumulative release after 24 h whereas, <i>in vivo</i> pharmacokinetic study revealed an increase in C<sub>max</sub> from 0.48 µg/mL (FSM-Suspension) to 0.77 µg/mL (FSM NLCs) to increase the bioavailability to approx. 241% in FSM NLCs. The half-life escalation demonstrated that the residence time of the nanoparticles prolonged at the physiologic pH.</p><p><strong>Conclusions: </strong>FSM-NLCs exhibited sustained release over a prolonged period, improved residence time in the body, and their action was prolonged.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"219-230"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central composite design (CCD) based formulation, optimization, in-vitro and ex-vivo characterization of 5-fluorouracil-loaded emulgel for enhanced dermal penetration and psoriasis management.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-01 Epub Date: 2025-02-14 DOI: 10.1080/03639045.2025.2464782
Simran Parhi, Naureen Afrose, Kavitha Rajendran, Damodharan Narayanasamy
{"title":"Central composite design (CCD) based formulation, optimization, <i>in-vitro</i> and <i>ex-vivo</i> characterization of 5-fluorouracil-loaded emulgel for enhanced dermal penetration and psoriasis management.","authors":"Simran Parhi, Naureen Afrose, Kavitha Rajendran, Damodharan Narayanasamy","doi":"10.1080/03639045.2025.2464782","DOIUrl":"10.1080/03639045.2025.2464782","url":null,"abstract":"<p><strong>Objective: </strong>Psoriasis is a condition that mostly responds to topical remedies. 5-FU is promising since it is anti-proliferative but has poor permeability. The study aimed to fabricate a novel 5-FU emulgel in order to accomplish enhanced therapy of psoriasis.</p><p><strong>Methods: </strong>A central composite design (CCD) was employed to optimize the emulgel's key characteristics, including viscosity, spreadability, drug content, and <i>in-vitro</i> release profile. This statistical approach utilized a five-level, two-factor model to construct linear and quadratic relationships between the formulation variables and the desired responses. Design-Expert software version 13 facilitated this process, requiring 13 experimental runs (FU1-FU13) to achieve optimal formulation parameters. The emulgel consisted of an oil phase (oleic acid, Span 80, and Transcutol P) and an aqueous phase (5-FU and Tween 80). High shear homogenization was utilized for emulsification. The emulsion and gel were combined in a 1:1 ratio to form the emulgel. Finally, the optimized emulgel (FU13) underwent assessments for drug-excipient compatibility, <i>ex-vivo</i> drug permeability through the skin barrier, and long-term stability.</p><p><strong>Results: </strong>The results of optimized formulation FU13 showed viscosity of 5166 ± 9.01 Pa.s, spreadability of 27.56 ± 2.69 g.cm/s, extrudability of 28.49 ± 2.25 g/cm, drug content of 87.9 ± 3.16%, <i>in-vitro</i> drug release of 96.4 ± 1.25 up to 360 min and <i>ex-vivo</i> cumulative permeability of 1056.97 ± 10.33 µg/cm<sup>2</sup>. FU13 showed no significant chemical interactions and was stable throughout stability period.</p><p><strong>Conclusion: </strong>It is within this context that the present study appears to possess significant potential for topical treatment of psoriasis, as it provides higher therapeutic gain over current treatment modalities with fewer undesired effects.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"244-261"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted antibacterial and anticancer therapeutics: PEGylated liposomal delivery of turmeric and cinnamon extracts-in vitro and in vivo efficacy.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.1080/03639045.2025.2463395
Sitah Alharthi, Amal Abdullah Alrashidi, Saud Almawash, Hasan Ebrahimi Shahmabadi, Seyed Ebrahim Alavi
{"title":"Targeted antibacterial and anticancer therapeutics: PEGylated liposomal delivery of turmeric and cinnamon extracts-<i>in vitro</i> and <i>in vivo</i> efficacy.","authors":"Sitah Alharthi, Amal Abdullah Alrashidi, Saud Almawash, Hasan Ebrahimi Shahmabadi, Seyed Ebrahim Alavi","doi":"10.1080/03639045.2025.2463395","DOIUrl":"10.1080/03639045.2025.2463395","url":null,"abstract":"<p><strong>Objective: </strong>This study presents the characterization and evaluation of polyethylene glycol (PEG)-coated liposomal formulations loaded with turmeric (TUR) and cinnamon (CINN) extracts for the treatment of bacterial infections.</p><p><strong>Significance: </strong>TUR/CINN-loaded PEGylated liposomes enhance the antibacterial effects of TUR and CINN both <i>in vitro</i> and <i>in vivo.</i></p><p><strong>Methods: </strong>PEGylated liposomes loaded with TUR and CINN were synthesized using the reverse-phase evaporation method and characterized by dynamic light scattering and spectrophotometry. The formulations were also evaluated for biocompatibility, permeability, and antibacterial efficacy in both <i>in vitro</i> and <i>in vivo</i> environments.</p><p><strong>Results: </strong>The nanoparticles, with dimensions ranging from 155 to 164 nm, exhibited consistent size distribution (polydispersity index (PDI) of 0.219 to 0.23), stable zeta potentials (-20 to -13 mV), and effective drug encapsulation rates (86.8% to 93.6%), suggesting their potential for targeted drug delivery. <i>In vitro</i> experiments demonstrated their biocompatibility (cell viability exceeding 75% at 40 µg/mL), permeability (transfer rates of 20.2% to 21.5%), antibacterial activity (minimum inhibitory concentrations of 8 to 64 µg/mL), and their ability to generate reactive oxygen species (1.2- to 2-fold increase compared to the control). In an <i>in vivo</i> murine model of <i>Pseudomonas aeruginosa</i> skin infections, significant reductions in viable bacterial counts were observed, with PEG-Lip-TUR/CINN leaving only 10<sup>2</sup> colony-forming units/mL. Additionally, this formulation displayed anti-metastatic properties, inhibiting cancer cell migration by 99%.</p><p><strong>Conclusions: </strong>This study highlights the potential of PEGylated liposomal formulations loaded with TUR and CINN as versatile therapeutic platforms for the treatment of antibiotic-resistant infections and cancer metastasis.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"231-243"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison between molecular dynamics potentials for simulation of graphene-based nanomaterials for biomedical applications. 生物医学应用中石墨烯基纳米材料模拟的分子动力学电位比较。
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-01 Epub Date: 2025-02-07 DOI: 10.1080/03639045.2025.2457387
Laurentius Ivan Ageng Marhaendra, Yudi Rosandi, Amirah Mohd Gazzali, Dhania Novitasari, Muchtaridi Muchtaridi
{"title":"Comparison between molecular dynamics potentials for simulation of graphene-based nanomaterials for biomedical applications.","authors":"Laurentius Ivan Ageng Marhaendra, Yudi Rosandi, Amirah Mohd Gazzali, Dhania Novitasari, Muchtaridi Muchtaridi","doi":"10.1080/03639045.2025.2457387","DOIUrl":"10.1080/03639045.2025.2457387","url":null,"abstract":"<p><strong>Objective: </strong>This article provides a substantial review of recent research and comparison on molecular dynamics potentials to determine which are most suitable for simulating the phenomena in graphene-based nanomaterials (GBNs).</p><p><strong>Significance: </strong>GBNs gain significant attention due to their remarkable properties and potential applications, notably in nanomedicine. However, the physical and chemical characteristics toward macromolecules that justify their nanomedical applications are not yet fully understood. The molecular interaction through molecular dynamic simulation offers the benefits for simulating inorganic molecules like GBNs, with necessary adjustments to account for physical and chemical interactions, or thermodynamic conditions.</p><p><strong>Method: </strong>In this review, we explore various molecular dynamics potentials (force fields) used to simulate interactions and phenomena in graphene-based nanomaterials. Additionally, we offer a brief overview of the benefits and drawbacks of each force fields that available for analysis to assess which one is suitable to study the molecular interaction of graphene-based nanomaterials.</p><p><strong>Result: </strong>We identify and compare various molecular dynamics potentials that available for analyzing GBNs, providing insights into their suitability for simulating specific phenomena in graphene-based nanomaterials. The specification of each force fields and its purpose can be used for further application of molecular dynamics simulation on GBNs.</p><p><strong>Conclusion: </strong>GBNs hold significant promise for applications like nanomedicine, but their physical and chemical properties must be thoroughly studied for safe clinical use. Molecular dynamics simulations, using either reactive or non-reactive MD potentials depending on the expected chemical changes, are essential for accurately modeling these properties, requiring careful selection based on the specific application.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"193-208"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation of topical gel contains a novel benzoic acid derivative for skin infection treatment: in vitro and in vivo evaluations.
IF 2.4 4区 医学
Drug Development and Industrial Pharmacy Pub Date : 2025-03-01 Epub Date: 2025-02-16 DOI: 10.1080/03639045.2025.2464793
Amany A Abdel-Rheem, Awwad A Radwan, Gamal M Mahrous, Diaa-Eldin Z Shaaban, Adel F Alghaith, Mohamed H Al-Agamy, Helal F Hetta, Gamal A Shazly, Aarti Bains, Mohammad A Altamimi
{"title":"Formulation of topical gel contains a novel benzoic acid derivative for skin infection treatment: <i>in vitro</i> and <i>in vivo</i> evaluations.","authors":"Amany A Abdel-Rheem, Awwad A Radwan, Gamal M Mahrous, Diaa-Eldin Z Shaaban, Adel F Alghaith, Mohamed H Al-Agamy, Helal F Hetta, Gamal A Shazly, Aarti Bains, Mohammad A Altamimi","doi":"10.1080/03639045.2025.2464793","DOIUrl":"10.1080/03639045.2025.2464793","url":null,"abstract":"<p><strong>Objective: </strong>The increasing prevalence of antimicrobial resistance and the adverse effects associated with systemic administration of antibiotics necessitate the development of alternative therapeutic strategies. The new benzoic acid derivative: (E)-2-(1-isobutyl-2-oxoindolin-3-ylideneamino)-4-chlorobenzoic acid (IOACA) was reported to have a potent activity against Gram-positive bacteria including <i>S. aureus</i> and <i>B. subtilis</i>. That significant activity of IOACA and its log <i>P</i> value of 1.66 prompted us to formulate IOACA as a topical gel for the treatment of skin infections.</p><p><strong>Methods: </strong>Formulation of a topical gel using Carbopol 934 as gelling agent; physicochemical characterization including drug content, viscosity, spreadability, pH determination, <i>in vitro</i> release study, and release kinetics; <i>in vitro</i> assessment of the antimicrobial efficacy of the gel against <i>Staphylococcus aureus</i> and <i>Bacillus subtilis</i> by agar diffusion method; <i>in vivo</i> evaluation of skin irritation effect and antimicrobial activity of the gel using male albino rat model.</p><p><strong>Results: </strong>The prepared gel showed homogeneity and consistency. The pH values range from 5.8 to 6.5, with good viscosity and spreadability. The drug content was in an acceptable range. The cumulative amount released of the drug ranged from (72.2 ± 1.3% to 107.6 ± 4.7%). <i>F</i>3 approaches zero-order kinetics. <i>In vivo</i> studies showed significant reduction in viable count and infection severity with complete curing of staphylococcal skin rat infection after eight days of treatment.</p><p><strong>Conclusion: </strong>The novel benzoic acid derivative-based topical gel is a promising candidate for the treatment of skin infections, offering an effective alternative to systemic antibiotics and contributing to avoid the antimicrobial resistance.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"262-272"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信