Digital BiomarkersPub Date : 2024-08-29eCollection Date: 2024-01-01DOI: 10.1159/000540547
Guilherme Camargo Oliveira, Quoc Cuong Ngo, Leandro Aparecido Passos, Leonardo Silva Oliveira, Stella Stylianou, João Paulo Papa, Dinesh Kumar
{"title":"Video Assessment to Detect Amyotrophic Lateral Sclerosis.","authors":"Guilherme Camargo Oliveira, Quoc Cuong Ngo, Leandro Aparecido Passos, Leonardo Silva Oliveira, Stella Stylianou, João Paulo Papa, Dinesh Kumar","doi":"10.1159/000540547","DOIUrl":"https://doi.org/10.1159/000540547","url":null,"abstract":"<p><strong>Introduction: </strong>Weakened facial movements are early-stage symptoms of amyotrophic lateral sclerosis (ALS). ALS is generally detected based on changes in facial expressions, but large differences between individuals can lead to subjectivity in the diagnosis. We have proposed a computerized analysis of facial expression videos to detect ALS.</p><p><strong>Methods: </strong>This study investigated the action units obtained from facial expression videos to differentiate between ALS patients and healthy individuals, identifying the specific action units and facial expressions that give the best results. We utilized the Toronto NeuroFace Dataset, which includes nine facial expression tasks for healthy individuals and ALS patients.</p><p><strong>Results: </strong>The best classification accuracy was 0.91 obtained for the pretending to smile with tight lips expression.</p><p><strong>Conclusion: </strong>This pilot study shows the potential of using computerized facial expression analysis based on action units to identify facial weakness symptoms in ALS.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"171-180"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-08-28eCollection Date: 2024-01-01DOI: 10.1159/000540327
Hanin Ayadi, Abir Elbéji, Vladimir Despotovic, Guy Fagherazzi
{"title":"Digital Vocal Biomarker of Smoking Status Using Ecological Audio Recordings: Results from the Colive Voice Study.","authors":"Hanin Ayadi, Abir Elbéji, Vladimir Despotovic, Guy Fagherazzi","doi":"10.1159/000540327","DOIUrl":"https://doi.org/10.1159/000540327","url":null,"abstract":"<p><strong>Introduction: </strong>The complex health, social, and economic consequences of tobacco smoking underscore the importance of incorporating reliable and scalable data collection on smoking status and habits into research across various disciplines. Given that smoking impacts voice production, we aimed to develop a gender and language-specific vocal biomarker of smoking status.</p><p><strong>Methods: </strong>Leveraging data from the Colive Voice study, we used statistical analysis methods to quantify the effects of smoking on voice characteristics. Various voice feature extraction methods combined with machine learning algorithms were then used to produce a gender and language-specific (English and French) digital vocal biomarker to differentiate smokers from never-smokers.</p><p><strong>Results: </strong>A total of 1,332 participants were included after propensity score matching (mean age = 43.6 [13.65], 64.41% are female, 56.68% are English speakers, 50% are smokers and 50% are never-smokers). We observed differences in voice features distribution: for women, the fundamental frequency F0, the formants F1, F2, and F3 frequencies and the harmonics-to-noise ratio were lower in smokers compared to never-smokers (<i>p</i> < 0.05) while for men no significant disparities were noted between the two groups. The accuracy and AUC of smoking status prediction reached 0.71 and 0.76, respectively, for the female participants, and 0.65 and 0.68, respectively, for the male participants.</p><p><strong>Conclusion: </strong>We have shown that voice features are impacted by smoking. We have developed a novel digital vocal biomarker that can be used in clinical and epidemiological research to assess smoking status in a rapid, scalable, and accurate manner using ecological audio recordings.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"159-170"},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-08-26eCollection Date: 2024-01-01DOI: 10.1159/000540492
Megan K O'Brien, Kristen Hohl, Richard L Lieber, Arun Jayaraman
{"title":"Automate, Illuminate, Predict: A Universal Framework for Integrating Wearable Sensors in Healthcare.","authors":"Megan K O'Brien, Kristen Hohl, Richard L Lieber, Arun Jayaraman","doi":"10.1159/000540492","DOIUrl":"https://doi.org/10.1159/000540492","url":null,"abstract":"<p><strong>Background: </strong>Wearable sensors have been heralded as revolutionary tools for healthcare. However, while data are easily acquired from sensors, users still grapple with questions about how sensors can meaningfully inform everyday clinical practice and research.</p><p><strong>Summary: </strong>We propose a simple, comprehensive framework for utilizing sensor data in healthcare. The framework includes three key processes that are applied together or separately to (1) automate traditional clinical measures, (2) illuminate novel correlates of disease and impairment, and (3) predict current and future outcomes. We demonstrate applications of the Automate-Illuminate-Predict framework using examples from rehabilitation medicine.</p><p><strong>Key messages: </strong>Automate-Illuminate-Predict provides a universal approach to extract clinically meaningful data from wearable sensors. This framework can be applied across the care continuum to enhance patient care and inform personalized medicine through accessible, noninvasive technology.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"149-158"},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-07-20eCollection Date: 2024-01-01DOI: 10.1159/000539529
Katherine Longardner, Qian Shen, Bin Tang, Brenton A Wright, Prantik Kundu, Fatta B Nahab
{"title":"An Algorithm for Automated Measurement of Kinetic Tremor Magnitude Using Digital Spiral Drawings.","authors":"Katherine Longardner, Qian Shen, Bin Tang, Brenton A Wright, Prantik Kundu, Fatta B Nahab","doi":"10.1159/000539529","DOIUrl":"10.1159/000539529","url":null,"abstract":"<p><strong>Introduction: </strong>Essential tremor is a common movement disorder. Numerous validated clinical rating scales exist to quantify essential tremor severity by employing rater-dependent visual observation but have limitations, including the need for trained human raters and the lack of precision and sensitivity compared to technology-based objective measures. Other continuous objective methods to quantify tremor amplitude have been developed, but frequently provide unitless measures (e.g., tremor power), limiting real-world interpretability. We propose a novel algorithm to measure kinetic tremor amplitude using digital spiral drawings, applying the V3 framework (sensor verification, analytical validation, and clinical validation) to establish reliability and clinical utility.</p><p><strong>Methods: </strong>Archimedes spiral drawings were recorded on a digitizing tablet from participants (<i>n</i> = 7) enrolled in a randomized placebo control double-blinded crossover pilot trial evaluating the efficacy of oral cannabinoids in reducing essential tremor. We developed an algorithm to calculate the mean and maximum tremor amplitude derived from the spiral tracings. We compared the digitally measured tremor amplitudes to manual measurement to evaluate sensor reliability, determined the test-retest reliability of the digital output across two short-interval repeated measures, and compared the digital measure to kinetic tremor severity graded using The Essential Tremor Rating Assessment Scale (TETRAS) score for spiral drawings.</p><p><strong>Results: </strong>This algorithm for automated assessment of kinetic tremor amplitude from digital spiral tracings demonstrated a high correlation with manual spot measures of tremor amplitude, excellent test-retest reliability, and a high correlation with human ratings of the TETRAS score for spiral drawing severity when the tremor severity was rated \"slight tremor\" or worse.</p><p><strong>Discussion: </strong>This digital measure provides a simple and clinically relevant evaluation of kinetic tremor amplitude that shows promise as a potential future endpoint for use in clinical trials of essential tremor.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"140-148"},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-07-04eCollection Date: 2024-01-01DOI: 10.1159/000539253
Piper Fromy, Michael Kremliovsky, Emmanuel Mignot, Mark Aloia, Jonathan Berent, Farah Hasan, Dennis Hwang, Jiat-Ling Poon, Rebecca Malcolm, Christopher Miller, Womba Nawa, Jessie Bakker
{"title":"Digital Measures Development: Lessons Learned from an Expert Workshop Addressing Cross-Therapeutic Area Measures of Sleep.","authors":"Piper Fromy, Michael Kremliovsky, Emmanuel Mignot, Mark Aloia, Jonathan Berent, Farah Hasan, Dennis Hwang, Jiat-Ling Poon, Rebecca Malcolm, Christopher Miller, Womba Nawa, Jessie Bakker","doi":"10.1159/000539253","DOIUrl":"10.1159/000539253","url":null,"abstract":"<p><strong>Introduction: </strong>The Digital Measures Development: Core Measures of Sleep project, led by the Digital Medicine Society (DiMe), emphasizes the importance of sleep as a cornerstone of health and the need for standardized measurements of sleep and its disturbances outside the laboratory. This initiative recognizes the complex relationship between sleep and overall health, addressing it as both a symptom of underlying conditions and a consequence of therapeutic interventions. It aims to fill a crucial gap in healthcare by promoting the development of accessible, nonintrusive, and cost-effective digital tools for sleep assessment, focusing on factors important to patients, caregivers, and clinicians.</p><p><strong>Methods: </strong>A central feature of this project was an expert workshop conducted on April 19th, 2023. The workshop convened stakeholders from diverse backgrounds, including regulatory, payer, industry, academic, and patient groups, to deliberate on the project's direction. This gathering focused on discussing the challenges and necessities of measuring sleep across various therapeutic areas, aiming to identify broad areas for initial focus while considering the feasibility of generalizing these measures where applicable. The methodological emphasis was on leveraging expert consensus to guide the project's approach to digital sleep measurement.</p><p><strong>Results: </strong>The workshop resulted in the identification of seven key themes that will direct the DiMe Core Digital Measures of Sleep project and the broader field of sleep research moving forward. These themes underscore the project's innovative approach to sleep health, highlighting the complexity of omni-therapeutic sleep measurement and identifying potential areas for targeted research and development. The discussions and outcomes of the workshop serve as a roadmap for enhancing digital sleep measurement tools, ensuring they are relevant, accurate, and capable of addressing the nuanced needs of diverse patient populations.</p><p><strong>Conclusion: </strong>The Digital Medicine Society's Core Measures of Sleep project represents a pivotal effort to advance sleep health through digital innovation. By focusing on the development of standardized, patient-centric, and clinically relevant digital sleep assessment tools, the project addresses a significant need in healthcare. The expert workshop's outcomes underscore the importance of collaborative, multi-stakeholder engagement in identifying and overcoming the challenges of sleep measurement. This initiative sets a new precedent for the integration of digital tools into sleep health research and practice, promising to improve outcomes for patients worldwide by enhancing our understanding and measurement of sleep.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"132-139"},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-07-01eCollection Date: 2024-01-01DOI: 10.1159/000539487
Mikaela Irene Fudolig, Laura S P Bloomfield, Matthew Price, Yoshi M Bird, Johanna E Hidalgo, Julia N Kim, Jordan Llorin, Juniper Lovato, Ellen W McGinnis, Ryan S McGinnis, Taylor Ricketts, Kathryn Stanton, Peter Sheridan Dodds, Christopher M Danforth
{"title":"The Two Fundamental Shapes of Sleep Heart Rate Dynamics and Their Connection to Mental Health in College Students.","authors":"Mikaela Irene Fudolig, Laura S P Bloomfield, Matthew Price, Yoshi M Bird, Johanna E Hidalgo, Julia N Kim, Jordan Llorin, Juniper Lovato, Ellen W McGinnis, Ryan S McGinnis, Taylor Ricketts, Kathryn Stanton, Peter Sheridan Dodds, Christopher M Danforth","doi":"10.1159/000539487","DOIUrl":"10.1159/000539487","url":null,"abstract":"<p><strong>Introduction: </strong>Wearable devices are rapidly improving our ability to observe health-related processes for extended durations in an unintrusive manner. In this study, we use wearable devices to understand how the shape of the heart rate curve during sleep relates to mental health.</p><p><strong>Methods: </strong>As part of the Lived Experiences Measured Using Rings Study (LEMURS), we collected heart rate measurements using the Oura ring (Gen3) for over 25,000 sleep periods and self-reported mental health indicators from roughly 600 first-year university students in the USA during the fall semester of 2022. Using clustering techniques, we find that the sleeping heart rate curves can be broadly separated into two categories that are mainly differentiated by how far along the sleep period the lowest heart rate is reached.</p><p><strong>Results: </strong>Sleep periods characterized by reaching the lowest heart rate later during sleep are also associated with shorter deep and REM sleep and longer light sleep, but not a difference in total sleep duration. Aggregating sleep periods at the individual level, we find that consistently reaching the lowest heart rate later during sleep is a significant predictor of (1) self-reported impairment due to anxiety or depression, (2) a prior mental health diagnosis, and (3) firsthand experience in traumatic events. This association is more pronounced among females.</p><p><strong>Conclusion: </strong>Our results show that the shape of the sleeping heart rate curve, which is only weakly correlated with descriptive statistics such as the average or the minimum heart rate, is a viable but mostly overlooked metric that can help quantify the relationship between sleep and mental health.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"120-131"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-06-18eCollection Date: 2024-01-01DOI: 10.1159/000538992
Pouya Barahim Bastani, Ali S Saber Tehrani, Shervin Badihian, Hector Rieiro, David Rastall, Nathan Farrell, Max Parker, Jorge Otero-Millan, Ahmed Hassoon, David Newman-Toker, Lora L Clawson, Alpa Uchil, Kristen Riley, Steven R Zeiler
{"title":"Self-Recording of Eye Movements in Amyotrophic Lateral Sclerosis Patients Using a Smartphone Eye-Tracking App.","authors":"Pouya Barahim Bastani, Ali S Saber Tehrani, Shervin Badihian, Hector Rieiro, David Rastall, Nathan Farrell, Max Parker, Jorge Otero-Millan, Ahmed Hassoon, David Newman-Toker, Lora L Clawson, Alpa Uchil, Kristen Riley, Steven R Zeiler","doi":"10.1159/000538992","DOIUrl":"10.1159/000538992","url":null,"abstract":"<p><strong>Introduction: </strong>Amyotrophic lateral sclerosis (ALS) can affect various eye movements, making eye tracking a potential means for disease monitoring. In this study, we evaluated the feasibility of ALS patients self-recording their eye movements using the \"EyePhone,\" a smartphone eye-tracking application.</p><p><strong>Methods: </strong>We prospectively enrolled ten participants and provided them with an iPhone equipped with the EyePhone app and a PowerPoint presentation with step-by-step recording instructions. The goal was for the participants to record their eye movements (saccades and smooth pursuit) without the help of the study team. Afterward, a trained physician administered the same tests using video-oculography (VOG) goggles and asked the participants to complete a questionnaire regarding their self-recording experience.</p><p><strong>Results: </strong>All participants successfully completed the self-recording process without assistance from the study team. Questionnaire data indicated that participants viewed self-recording with EyePhone favorably, considering it easy and comfortable. Moreover, 70% indicated that they prefer self-recording to being recorded by VOG goggles.</p><p><strong>Conclusion: </strong>With proper instruction, ALS patients can effectively use the EyePhone to record their eye movements, potentially even in a home environment. These results demonstrate the potential for smartphone eye-tracking technology as a viable and self-administered tool for monitoring disease progression in ALS, reducing the need for frequent clinic visits.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"111-119"},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-06-12eCollection Date: 2024-01-01DOI: 10.1159/000539126
Tomer Cramer, Shlomo Yeshurun, Merav Mor
{"title":"Changes in Exhaled Carbon Dioxide during the Menstrual Cycle and Menopause.","authors":"Tomer Cramer, Shlomo Yeshurun, Merav Mor","doi":"10.1159/000539126","DOIUrl":"10.1159/000539126","url":null,"abstract":"<p><strong>Introduction: </strong>The menstrual cycle (MC) reflects multifaceted hormonal changes influencing women's metabolism, making it a key aspect of women's health. Changes in hormonal levels throughout the MC have been demonstrated to influence various physiological parameters, including exhaled carbon dioxide (CO<sub>2</sub>). Lumen is a small handheld device that measures metabolic fuel usage via exhaled CO<sub>2</sub>. This study leverages exhaled CO<sub>2</sub> patterns measured by the Lumen device to elucidate metabolic variations during the MC, which may hold significance for fertility management. Additionally, CO<sub>2</sub> changes are explored in menopausal women with and without hormonal replacement therapy (HRT).</p><p><strong>Methods: </strong>This retrospective cohort study analyzed exhaled CO<sub>2</sub> data from 3,981 Lumen users, including eumenorrheal women and menopausal women with and without HRT. Linear mixed models assessed both CO<sub>2</sub> changes of eumenorrheal women during the MC phases and compared between menopausal women with or without HRT.</p><p><strong>Results: </strong>Eumenorrheic women displayed cyclical CO<sub>2</sub> patterns during the MC, characterized by elevated levels during the menstrual, estrogenic and ovulation phases and decreased levels during post-ovulation and pre-menstrual phases. Notably, despite variations in cycle length affecting the timing of maximum and minimum CO<sub>2</sub> levels within a cycle, the overall pattern remained consistent. Furthermore, CO<sub>2</sub> levels in menopausal women without HRT differed significantly from those with HRT, which showed lower levels.</p><p><strong>Conclusion: </strong>This study reveals distinct CO<sub>2</sub> patterns across MC phases, providing insights into hormonal influences on metabolic activity. Menopausal women exhibit altered CO<sub>2</sub> profiles in relation to the use or absence of HRT. CO<sub>2</sub> monitoring emerges as a potential tool for tracking the MC and understanding metabolic changes during menopause.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"102-110"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-05-08eCollection Date: 2024-01-01DOI: 10.1159/000538270
Jonas Hummel, Michael Schwenk, Daniel Seebacher, Philipp Barzyk, Joachim Liepert, Manuel Stein
{"title":"Clustering Approaches for Gait Analysis within Neurological Disorders: A Narrative Review.","authors":"Jonas Hummel, Michael Schwenk, Daniel Seebacher, Philipp Barzyk, Joachim Liepert, Manuel Stein","doi":"10.1159/000538270","DOIUrl":"10.1159/000538270","url":null,"abstract":"<p><strong>Background: </strong>The prevalence of neurological disorders is increasing, underscoring the importance of objective gait analysis to help clinicians identify specific deficits. Nevertheless, existing technological solutions for gait analysis often suffer from impracticality in daily clinical use, including excessive cost, time constraints, and limited processing capabilities.</p><p><strong>Summary: </strong>This review aims to evaluate existing techniques for clustering patients with the same neurological disorder to assist clinicians in optimizing treatment options. A narrative review of thirteen relevant studies was conducted, characterizing their methods, and evaluating them against seven criteria. Additionally, the results are summarized in two comprehensive tables. Recent approaches show promise; however, our results indicate that, overall, only three approaches display medium or high process maturity, and only two show high clinical applicability.</p><p><strong>Key messages: </strong>Our findings highlight the necessity for advancements, specifically regarding the use of markerless optical tracking systems, the optimization of experimental plans, and the external validation of results. This narrative review provides a comprehensive overview of existing clustering techniques, bridging the gap between instrumented gait analysis and its real-world clinical utility. We encourage researchers to use our findings and those from other medical fields to enhance clustering techniques for patients with neurological disorders, facilitating the identification of disparities within groups and their extent, ultimately improving patient outcomes.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"93-101"},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2024-04-26eCollection Date: 2024-01-01DOI: 10.1159/000538561
Suneeta Godbole, Andrew Leroux, Ashley Brooks-Russell, Prem S Subramanian, Michael J Kosnett, Julia Wrobel
{"title":"A Study of Pupil Response to Light as a Digital Biomarker of Recent Cannabis Use.","authors":"Suneeta Godbole, Andrew Leroux, Ashley Brooks-Russell, Prem S Subramanian, Michael J Kosnett, Julia Wrobel","doi":"10.1159/000538561","DOIUrl":"https://doi.org/10.1159/000538561","url":null,"abstract":"<p><strong>Introduction: </strong>Given the traffic safety and occupational injury prevention implications associated with cannabis impairment, there is a need for objective and validated measures of recent cannabis use. Pupillary light response may offer an approach for detection.</p><p><strong>Method: </strong>Eighty-four participants (mean age: 32, 42% female) with daily, occasional, and no-use cannabis use histories participated in pupillary light response tests before and after smoking cannabis ad libitum or relaxing for 15 min (no use). The impact of recent cannabis consumption on trajectories of the pupillary light response was modeled using functional data analysis tools. Logistic regression models for detecting recent cannabis use were compared, and average pupil trajectories across cannabis use groups and times since light test administration were estimated.</p><p><strong>Results: </strong>Models revealed small, significant differences in pupil response to light after cannabis use comparing the occasional use group to the no-use control group, and similar statistically significant differences in pupil response patterns comparing the daily use group to the no-use comparison group. Trajectories of pupillary light response estimated using functional data analysis found that acute cannabis smoking was associated with less initial and sustained pupil constriction compared to no cannabis smoking.</p><p><strong>Conclusion: </strong>These analyses show the promise of pairing pupillary light response and functional data analysis methods to assess recent cannabis use.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"83-92"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}