{"title":"Development of a Prototype Video Head Impulse Test System Using an iPhone for Screening of Peripheral Vestibular Dysfunction.","authors":"Tatsuaki Kuroda, Kazuhiro Kuroda, Hiroaki Fushiki","doi":"10.1159/000534543","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Head impulse, nystagmus, and test of skew (HINTS) is more accurate for the early diagnosis of occipital fossa stroke than magnetic resonance imaging. However, the head impulse test (HIT) is relatively challenging to perform, as it is subjective. Herein, we developed a prototype video HIT (vHIT) system using an iPhone (Apple, Cupertino, CA, USA) that is compact, easy to operate, and analyzable by our iPhone application.</p><p><strong>Methods: </strong>The iPhone-vHIT and a vHIT using EyeSeeCam (Interacoustics, Eden Prairie, NM, USA) were performed on a healthy man in his 30s and on a patient with vestibular neuritis who visited the Mejiro University Ear Institute Clinic. For the iPhone-vHIT, eye movements were detected by analyzing high-speed videos captured using an iPhone camera, and head movements were followed using an iPhone gyro sensor. An iPhone fixation brace was used to capture the video without any blurring.</p><p><strong>Results: </strong>The iPhone-vHIT system obtained vHIT waveforms similar to those of the EyeSeeCam-vHIT system in the healthy man and the patient with vestibular neuritis. The iPhone-vHIT system effectively detected the reduced vestibulo-ocular reflex gain in patients with vestibular neuritis. The iPhone-vHIT system at 120 frames per second was less sensitive to catch-up saccades than the EyeSeeCam.</p><p><strong>Conclusion: </strong>vHIT systems using a smartphone have been reported but are currently unavailable. At present, the iPhone-vHIT application in this study is the only available smartphone-based vHIT system for screening of peripheral vestibular dysfunction. We believe that the prototype iPhone-vHIT with a high-speed camera will be clinically used to perform the vHIT, even though it only examines the lateral semicircular canal.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"7 1","pages":"150-156"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000534543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Head impulse, nystagmus, and test of skew (HINTS) is more accurate for the early diagnosis of occipital fossa stroke than magnetic resonance imaging. However, the head impulse test (HIT) is relatively challenging to perform, as it is subjective. Herein, we developed a prototype video HIT (vHIT) system using an iPhone (Apple, Cupertino, CA, USA) that is compact, easy to operate, and analyzable by our iPhone application.
Methods: The iPhone-vHIT and a vHIT using EyeSeeCam (Interacoustics, Eden Prairie, NM, USA) were performed on a healthy man in his 30s and on a patient with vestibular neuritis who visited the Mejiro University Ear Institute Clinic. For the iPhone-vHIT, eye movements were detected by analyzing high-speed videos captured using an iPhone camera, and head movements were followed using an iPhone gyro sensor. An iPhone fixation brace was used to capture the video without any blurring.
Results: The iPhone-vHIT system obtained vHIT waveforms similar to those of the EyeSeeCam-vHIT system in the healthy man and the patient with vestibular neuritis. The iPhone-vHIT system effectively detected the reduced vestibulo-ocular reflex gain in patients with vestibular neuritis. The iPhone-vHIT system at 120 frames per second was less sensitive to catch-up saccades than the EyeSeeCam.
Conclusion: vHIT systems using a smartphone have been reported but are currently unavailable. At present, the iPhone-vHIT application in this study is the only available smartphone-based vHIT system for screening of peripheral vestibular dysfunction. We believe that the prototype iPhone-vHIT with a high-speed camera will be clinically used to perform the vHIT, even though it only examines the lateral semicircular canal.