Patrik Theodor Nerdal, Florin Gandor, Maximilian Uwe Friedrich, Laurin Schappe, Georg Ebersbach, Walter Maetzler
{"title":"前庭-眼球反射抑制:数字时代的临床意义与评估","authors":"Patrik Theodor Nerdal, Florin Gandor, Maximilian Uwe Friedrich, Laurin Schappe, Georg Ebersbach, Walter Maetzler","doi":"10.1159/000537842","DOIUrl":null,"url":null,"abstract":"Abstract Background Visual acuity and image stability are crucial for daily activities, particularly during head motion. The vestibulo-ocular reflex (VOR) and its suppression (VORS) support stable fixation of objects of interest. The VOR drives a reflexive eye movement to counter retinal slip of a stable target during head motion. In contrast, VORS inhibits this countermovement when the target stimulus is in motion. The VORS allows for object fixation when it aligns with the direction of the head’s movement, or when an object within or outside the peripheral vision needs to be focused upon. Summary Deficits of the VORS have been linked to age-related diseases such as balance deficits associated with an increased fall risk. Therefore, the accurate assessment of the VORS is of particular clinical relevance. However, current clinical assessment methods for VORS are mainly qualitative and not sufficiently standardised. Recent advances in digital health technology, such as smartphone-based videooculography, offer a promising alternative for assessing VORS in a more accessible, efficient, and quantitative manner. Moreover, integrating mobile eye-tracking technology with virtual reality environments allows for the implementation of controlled VORS assessments with different visual inputs. These assessment approaches allow the extraction of novel parameters with potential pathomechanistic and clinical relevance. Key Messages We argue that researchers and clinicians can obtain a more nuanced understanding of this ocular stabilisation reflex and its associated pathologies by harnessing digital health technology for VORS assessment. Further research is warranted to explore the technologies’ full potential and utility in clinical practice.","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 2","pages":"52 - 58"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vestibulo-Ocular Reflex Suppression: Clinical Relevance and Assessment in the Digital Age\",\"authors\":\"Patrik Theodor Nerdal, Florin Gandor, Maximilian Uwe Friedrich, Laurin Schappe, Georg Ebersbach, Walter Maetzler\",\"doi\":\"10.1159/000537842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background Visual acuity and image stability are crucial for daily activities, particularly during head motion. The vestibulo-ocular reflex (VOR) and its suppression (VORS) support stable fixation of objects of interest. The VOR drives a reflexive eye movement to counter retinal slip of a stable target during head motion. In contrast, VORS inhibits this countermovement when the target stimulus is in motion. The VORS allows for object fixation when it aligns with the direction of the head’s movement, or when an object within or outside the peripheral vision needs to be focused upon. Summary Deficits of the VORS have been linked to age-related diseases such as balance deficits associated with an increased fall risk. Therefore, the accurate assessment of the VORS is of particular clinical relevance. However, current clinical assessment methods for VORS are mainly qualitative and not sufficiently standardised. Recent advances in digital health technology, such as smartphone-based videooculography, offer a promising alternative for assessing VORS in a more accessible, efficient, and quantitative manner. Moreover, integrating mobile eye-tracking technology with virtual reality environments allows for the implementation of controlled VORS assessments with different visual inputs. These assessment approaches allow the extraction of novel parameters with potential pathomechanistic and clinical relevance. Key Messages We argue that researchers and clinicians can obtain a more nuanced understanding of this ocular stabilisation reflex and its associated pathologies by harnessing digital health technology for VORS assessment. Further research is warranted to explore the technologies’ full potential and utility in clinical practice.\",\"PeriodicalId\":11242,\"journal\":{\"name\":\"Digital Biomarkers\",\"volume\":\"8 2\",\"pages\":\"52 - 58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000537842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000537842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Vestibulo-Ocular Reflex Suppression: Clinical Relevance and Assessment in the Digital Age
Abstract Background Visual acuity and image stability are crucial for daily activities, particularly during head motion. The vestibulo-ocular reflex (VOR) and its suppression (VORS) support stable fixation of objects of interest. The VOR drives a reflexive eye movement to counter retinal slip of a stable target during head motion. In contrast, VORS inhibits this countermovement when the target stimulus is in motion. The VORS allows for object fixation when it aligns with the direction of the head’s movement, or when an object within or outside the peripheral vision needs to be focused upon. Summary Deficits of the VORS have been linked to age-related diseases such as balance deficits associated with an increased fall risk. Therefore, the accurate assessment of the VORS is of particular clinical relevance. However, current clinical assessment methods for VORS are mainly qualitative and not sufficiently standardised. Recent advances in digital health technology, such as smartphone-based videooculography, offer a promising alternative for assessing VORS in a more accessible, efficient, and quantitative manner. Moreover, integrating mobile eye-tracking technology with virtual reality environments allows for the implementation of controlled VORS assessments with different visual inputs. These assessment approaches allow the extraction of novel parameters with potential pathomechanistic and clinical relevance. Key Messages We argue that researchers and clinicians can obtain a more nuanced understanding of this ocular stabilisation reflex and its associated pathologies by harnessing digital health technology for VORS assessment. Further research is warranted to explore the technologies’ full potential and utility in clinical practice.