Karina Montemor Klegen de Oliveira, Luiza de Oliveira Simões, Ana Mondadori Dos Santos, Carlos Eduardo Steiner
{"title":"Clinical Findings in a Series of Thirty Eight Patients with Williams-Beuren Syndrome.","authors":"Karina Montemor Klegen de Oliveira, Luiza de Oliveira Simões, Ana Mondadori Dos Santos, Carlos Eduardo Steiner","doi":"10.1159/000540941","DOIUrl":"10.1159/000540941","url":null,"abstract":"<p><strong>Introduction: </strong>Williams-Beuren syndrome is a contiguous gene syndrome caused by microdeletion of the locus 7q11.23. It is a clinically recognizable condition whose cardinal features include growth deficiency, variable degrees of neurodevelopmental disorders, congenital cardiac defects, outgoing personality, and typical facies. Case Series Presentation: This retrospective study analyzed 38 consecutive patients in a single center for rare diseases, diagnosed by Preus criteria modified by the Sugayama scoring system, comprising 17 male and 21 female individuals aged 1 month to 55 years. Cases were divided into two groups concerning (a) exclusive clinical diagnosis or (b) clinical diagnosis followed by a laboratory cytogenetic or cytogenomic test; except for hypertension, no significant difference was seen among both groups. The most frequent findings were intellectual deficiency, developmental delay, typical facies, and overfriendliness, all above 80% of the total sample. On the other hand, supravalvar aortic stenosis was found in only 32.4%, while other congenital heart diseases were seen in 56.7% of the sample. Unusual features included one individual with 13 pairs of ribs, another with unilateral microphthalmia, and three with unilateral renal agenesis. Comorbidities comprised 9 cases of hypothyroidism and 1 case each of precocious puberty, segmental vitiligo, type 1 diabetes mellitus, and congenital adrenal hyperplasia.</p><p><strong>Conclusion: </strong>Preus criteria modified by the Sugayama scoring system are still efficient and helpful for clinical diagnosis. This is the second report on microphthalmia and the first study describing the association between vitiligo, type 1 diabetes mellitus, and congenital adrenal hyperplasia in individuals with Williams-Beuren syndrome.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isodicentric Y Chromosome with Multiple Breakpoints in the Pseudoautosomal Region 1.","authors":"Yasuko Ogiwara, Yoshitomo Kobori, Erina Suzuki, Atsushi Hattori, Kanako Tanase-Nakao, Akiyoshi Osaka, Toshiyuki Iwahata, Hiroshi Okada, Yoko Kuroki, Maki Fukami","doi":"10.1159/000540634","DOIUrl":"10.1159/000540634","url":null,"abstract":"<p><strong>Introduction: </strong>Isodicentric Y chromosomes are relatively common structural variants of the human genome. The underlying mechanism of isodicentric Y chromosomes with short arm breakpoints [idic(Yq)] remains to be clarified.</p><p><strong>Case presentation: </strong>We encountered a Japanese man with azoospermia and mild short stature. G-banding and array-based comparative genomic hybridization indicated that his karyotype was 45,X/46,X,idic(Y)(qter→p11.32::p11.32→qter) with a ∼1.8 Mb terminal deletion. Whole-genome sequencing suggested that the Y chromosome had four breakpoints in a ∼7 kb region of the pseudoautosomal region 1 (PAR1).</p><p><strong>Conclusion: </strong>This case was assumed to have an idic(Yq) resulting from multiple DNA double-strand breaks in PAR1. This rearrangement may have been facilitated by the PAR1-specific chromatin architecture. The clinical features of the patient can be ascribed to SHOX haploinsufficiency and the presence of a 45,X cell line, although copy-number gains of some Yq genes and the size reduction of PAR1 may also contribute to his spermatogenic failure.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Esbrisse Dos Santos, C. Crepaldi, M. J. da Silva, P. P. Parise-Maltempi
{"title":"Revealing the satellite DNA content in Ancistrus sp. (Siluriformes: Loricariidae) by genomic and bioinformatic analysis.","authors":"Gabriel Esbrisse Dos Santos, C. Crepaldi, M. J. da Silva, P. P. Parise-Maltempi","doi":"10.1159/000538926","DOIUrl":"https://doi.org/10.1159/000538926","url":null,"abstract":"Introduction Eukaryotic genomes consist of both single and repetitive sequences, including Satellite DNAs (satDNA), which are non-coding sequences arranged in tandem arrays. These sequences play a crucial role in genomic functions and innovations, influencing processes such as nuclear material maintenance, heterochromatin formation, and sex chromosome differentiation. In this genomic era, advancements in next-generation sequencing and bioinformatic tools have facilitated the comprehensive cataloging of repetitive elements in genomes, particularly in non-model species. This study focuses on the satellitome of Ancistrus sp., a diverse fish species within the Loricariidae family. The genus Ancistrus displays significant karyotypic evolution, with deviations from the ancestral diploid number. Methods Using bioinformatic approaches, we identified 40 satellite DNA families in Ancistrus sp., constituting 5.19% of the genome. The abundance and divergence landscape analysis revealed diverse profiles, indicating recent amplification and homogenization of these satDNA sequences. Results The most abundant satellite, AnSat1-142, constitutes 2.1% of the genome, while the least abundant, AnSat40-52, represents 0.0034%. The monomer repeat length ranges from 16 to 142 base pairs, with an average length of 61 bp. These findings contribute to understanding the genomic dynamics and evolution of satDNAs in Ancistrus sp. Conclusion The study underscores the variability in satDNAs among fish species and provides valuable insights into the chromosomal organization and evolution of repetitive elements in non-model organisms.","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dinaíza Abadia Rocha-Reis, Igor Henrique Rodrigues-Oliveira, Rubens Pasa, Fabiano Bezerra Menegídio, John Seymour Pat Heslop-Harrison, Trude Schwarzacher, Karine Frehner Kavalco
{"title":"In silico Characterization of Satellitomes and Cross-Amplification of Putative satDNAs in Two Species of the Hypostomus ancistroides Complex (Siluriformes, Loricariidae).","authors":"Dinaíza Abadia Rocha-Reis, Igor Henrique Rodrigues-Oliveira, Rubens Pasa, Fabiano Bezerra Menegídio, John Seymour Pat Heslop-Harrison, Trude Schwarzacher, Karine Frehner Kavalco","doi":"10.1159/000539429","DOIUrl":"10.1159/000539429","url":null,"abstract":"<p><strong>Introduction: </strong>The mapping of the satellite DNA on chromosomes is vital to understanding the distribution and evolution of repetitions in the genome since these chromosomal studies have shown the origin, evolutionary mode, and function of repetitive sequences. This study aimed to prospect the satellitome and determine its location in the genome of two cryptic species of Hypostomus, H. aff. ancistroides and H. ancistroides, with and without XX/XY sexual chromosome system.</p><p><strong>Methods: </strong>Mitotic chromosomes and DNA extraction were obtained according to protocols. After the whole genome sequencing, the satDNAs were retrieved, amplified, and hybridized in chromosome preparations for male and female individuals.</p><p><strong>Results: </strong>We found 30 satellite families (47 variants, two superfamilies) in H. ancistroides and 38 satellite families (45 variants, four superfamilies) in H. aff. ancistroides. The sequences varied from 14 bp to 2,662 bp in H. ancistroides and from 14 bp to 2,918 bp in H. aff. ancistroides. We did not observe any tandem repeats that were exclusive to each of the libraries; however, many sequences showed very different abundances and copy numbers between the libraries. Four satDNAs did not hybridize on the chromosomes of either species. Conversely, one satDNA hybridized in both species, HxySat1-80. However, the phenotypes found varied among species, populations, and in the same individual. There was no sign of HanSat3-464 and HanSat11-335 in any individuals of H. aff. ancistroides, but markings were in the chromosomes of H. ancistroides. HxySat12-1127 and HxySat8-52, on the other hand, were only hybridized in H. aff. ancistroides, while H. ancistroides had a negative sign. No hybridization of satDNAs was found in the X and Y sex chromosomes as they were mostly composed of euchromatin.</p><p><strong>Conclusion: </strong>We distinguish H. aff. ancistroides as genetically different from H. ancistroides, recognizing that such characteristics go far beyond morphological, karyotypic, and molecular data. Our data support the differential abundance and location of satellite DNAs and confirm that many organisms, including fish, have repetitive sequences that validate the library hypothesis. All found and validated satDNAs and the characterization of the satellitomes of the two species represent important contributions to cytogenomic studies of the genus Hypostomus.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple Aneuploidy: First Report of a Patient Presenting with a Karyotype 45,X/48,XXX,+21.","authors":"Gabriela Roldão Correia Costa, Josep Jorente, Larissa Bretanha Pontes, Nilma Lúcia Viguetti Campos, Antonia Paula Marques-de-Faria, Társis Paiva Vieira, Carlos Eduardo Steiner","doi":"10.1159/000540587","DOIUrl":"10.1159/000540587","url":null,"abstract":"<p><strong>Introduction: </strong>The dual diagnosis of Down syndrome and Turner syndrome in the same patient was clinically identified in the early 1950s before the development of karyotyping techniques. After that, several authors reported anecdotal patients and/or reviewed series of Down-Turner double aneuploidies due to a regular 46,X,+21 constitution or different combinations of abnormal cell lines. In such cases, the most typical presentation encompasses the female sex, Down syndrome phenotype, and chromosomal mosaicism.</p><p><strong>Case presentation: </strong>Here we report a female patient presenting with short stature, dysmorphic features, developmental delay, and learning disabilities, whose karyotype revealed a previously undescribed 45,X[47]/48,XXX,+21[3] constitution.</p><p><strong>Conclusion: </strong>This is the first case encompassing these three aneuploidies together and, contrary to most previous reports, exhibiting a predominantly Turner syndrome phenotype associated with developmental delay.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Molecular Mechanism of Aurora-B Regulating Kinetochore-Microtubule Attachment in Mitosis and Oocyte Meiosis.","authors":"Shanshan Chen, Qiqi Sun, Bo Yao, Yanping Ren","doi":"10.1159/000540588","DOIUrl":"10.1159/000540588","url":null,"abstract":"<p><strong>Background: </strong>Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis.</p><p><strong>Summary: </strong>However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2.</p><p><strong>Key messages: </strong>This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Analysis of Parthenogenetic Chimerism in a 46,XX/46,XY Patient with Idiopathic Oligoasthenoteratozoospermia.","authors":"Yunjie He, Yuying Yan, Yuanyuan Lv, Jian Zeng","doi":"10.1159/000538396","DOIUrl":"10.1159/000538396","url":null,"abstract":"<p><strong>Introduction: </strong>Parthenogenetic chimera is an extremely rare condition in human. Very few patients with parthenogenetic chimerism with XX/XY cells have been identified.</p><p><strong>Case presentation: </strong>We report the clinical findings and molecular analysis of chimerism with a 46,XX/46,XY karyotype in a patient presenting idiopathic oligoasthenoteratozoospermia (OAT). To clarify the mechanism of chimera formation, short tandem repeat analysis using 21 loci was carried out. Quantitation of alleles in D6S1043, D12S391, fibrinogen alpha chain, and amelogenin revealed double paternal and one maternal genetic contribution to the patient, which is consistent with a parthenogenetic chimerism. The likely mechanism of chimerism formation was also discussed, followed by a literature review.</p><p><strong>Conclusion: </strong>This is the first documented case of parthenogenetic chimerism in an adult male with XX/XY cells presenting OAT. Improved cell sampling and more sensitive and specific detection methods are necessary to identify more patients with XX/XY chimerism for systematic studies on this condition in the future.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prenatal Diagnosis of Fetuses with 4q35 Deletion: Case Series and Review of the Literature.","authors":"Qianzhu Jiang, Lin Yuan, Haihua Yu","doi":"10.1159/000540378","DOIUrl":"10.1159/000540378","url":null,"abstract":"<p><strong>Introduction: </strong>4q35 deletion is a rare chromosomal syndrome with a wide range of phenotypes, which can be challenging to detect through prenatal ultrasound. This study aimed to summarize the fetal phenotypes of patients with 4q35 deletion.</p><p><strong>Case presentation: </strong>The study included four fetuses with 4q35 deletion, with detailed records of prenatal ultrasound and genetic testing results. These cases included following phenotypes, fetal growth restriction (FGR) (2/4), cystic hygroma (2/4), single umbilical artery (1/4), and fused kidney (1/4). One case was terminated, while the other three were born and showed no obvious abnormalities at the 1-year follow-up. Previous reports have described the fetal phenotype of 4q35 deletion in 6 patients from five families, with prenatal phenotypes including FGR (2/6), cardiac structural abnormalities (1/6), brain ventriculomegaly (1/6), oligohydramnios (1/6), and multicystic dysplastic kidneys (1/6).</p><p><strong>Conclusion: </strong>Overall, the phenotypes of fetuses with 4q35 deletion are diverse, with FGR potentially being a significant phenotype in these cases.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diego Madruga Saraiva, Marcelo Santos de Souza, Victoria Tura, Vitor Oliveira de Rosso, Edison Zefa, Analía Del Valle Garnero, Ricardo José Gunski, Francisco de Menezes Cavalcante Sassi, Marcelo de Bello Cioffi, Rafael Kretschmer
{"title":"Comparative Cytogenetics in Tyrannidae (Aves, Passeriformes): High Genetic Diversity despite Conserved Karyotype Organization.","authors":"Diego Madruga Saraiva, Marcelo Santos de Souza, Victoria Tura, Vitor Oliveira de Rosso, Edison Zefa, Analía Del Valle Garnero, Ricardo José Gunski, Francisco de Menezes Cavalcante Sassi, Marcelo de Bello Cioffi, Rafael Kretschmer","doi":"10.1159/000538586","DOIUrl":"10.1159/000538586","url":null,"abstract":"<p><strong>Introduction: </strong>Passeriformes has the greatest species diversity among Neoaves, and the Tyrannidae is the richest in this order with about 600 valid species. The diploid number of this family remains constant, ranging from 2n = 76 to 84, but the chromosomal morphology varies, indicating the occurrence of different chromosomal rearrangements. Cytogenetic studies of the Tyrannidae remain limited, with approximately 20 species having been karyotyped thus far. This study aimed to describe the karyotypes of two species from this family, Myiopagis viridicata and Sirystes sibilator.</p><p><strong>Methods: </strong>Skin biopsies were taken from each individual to establish fibroblast cell cultures and to obtain chromosomal preparations using the standard methodology. The chromosomal distribution of constitutive heterochromatin was investigated by C-banding, while the location of simple repetitive sequences (SSRs), 18S rDNA, and telomeric sequences was found through fluorescence in situ hybridization.</p><p><strong>Results: </strong>The karyotypes of both species are composed of 2n = 80. The 18S rDNA probes hybridized into two pairs of microchromosomes in M. viridicata, but only a single pair in S. sibilator. Only the telomeric portions of each chromosome in both species were hybridized by the telomere sequence probes. Most of the SSRs were found accumulated in the centromeric and telomeric regions of several macro- and microchromosomes in both species, which likely correspond to the heterochromatin-rich regions.</p><p><strong>Conclusion: </strong>Although both species analyzed showed a conserved karyotype organization (2n = 80), our study revealed significant differences in their chromosomal architecture, rDNA distribution, and SSR accumulation. These findings were discussed in the context of the evolution of Tyrannidae karyotypes.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex M V Ferreira, Patrik F Viana, Leandro Marajó, Eliana Feldberg
{"title":"First Karyotypic Insights into Potamotrygon schroederi Fernández-Yépez, 1958: Association of Different Classes of Repetitive DNA.","authors":"Alex M V Ferreira, Patrik F Viana, Leandro Marajó, Eliana Feldberg","doi":"10.1159/000539331","DOIUrl":"10.1159/000539331","url":null,"abstract":"<p><strong>Introduction: </strong>Currently, there are 38 valid species of freshwater stingrays, and these belong to the subfamily Potamotrygoninae. However, cytogenetic information about this group is limited, with studies mainly using classical techniques, Giemsa, and C-banding.</p><p><strong>Methods: </strong>In this study, we used classical and molecular cytogenetic techniques - mapping of 18S and 5S rDNA and simple sequence repeats (SSRs) - in order to investigate the karyotypic composition of Potamotrygon schroederi and reveal the karyoevolutionary trends of this group.</p><p><strong>Results: </strong>The species presented 2n = 66 chromosomes with 18m + 12sm + 16st + 20a, heterochromatic blocks distributed in the centromeric regions of all the chromosomes, and terminal blocks in the q arm of pairs 2 and 3. Mapping of 18S rDNA regions revealed multiple clusters on pairs 2 and 7 and a homolog of pair 24. The 5S rDNA region was found in the pericentromeric portion of the subtelocentric pair 16. Furthermore, dinucleotide SSRs sequences were found in the centromeric and terminal regions of different chromosomal pairs, with preferential accumulation in pair 17. In addition, we identified conspicuous blocks of (GATA)n and (GACA)n sequences colocalized with the 5S rDNA (pair 16).</p><p><strong>Conclusion: </strong>In general, this study corroborates the general trend of a reduction in 2n in the species of Potamotrygoninae subfamily. Moreover, we found that the location of rDNA regions is very similar among Potamotrygon species, and the SSRs accumulation in the second subtelocentric pair (17) seems to be a common trait in this genus.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}