Current opinion in virology最新文献

筛选
英文 中文
Immunotherapy for KSHV-associated diseases kshv相关疾病的免疫治疗
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-08-01 DOI: 10.1016/j.coviro.2022.101249
Kathryn Lurain, Robert Yarchoan, Ramya Ramaswami
{"title":"Immunotherapy for KSHV-associated diseases","authors":"Kathryn Lurain,&nbsp;Robert Yarchoan,&nbsp;Ramya Ramaswami","doi":"10.1016/j.coviro.2022.101249","DOIUrl":"10.1016/j.coviro.2022.101249","url":null,"abstract":"<div><p><span>Kaposi sarcoma<span> herpesvirus (KSHV)-associated diseases (Kaposi sarcoma, multicentric Castleman disease<span><span>, primary effusion lymphoma<span>, and KSHV inflammatory cytokine syndrome) are associated with </span></span>immune suppression and dysregulation and loss of KSHV-specific immunity. These diseases are most frequent in people living with HIV as well as those with primary or iatrogenic immune deficiencies. KSHV itself can modulate the immune system via viral homologs of host cytokines or downregulation of immune-surface markers altering host </span></span></span>immune surveillance<span><span>. These factors make KSHV-associated diseases prime targets for immunotherapy approaches. Several agents have been studied or are under investigation in KSHV-associated diseases, including </span>monoclonal antibodies, immunomodulatory agents, and therapeutic cytokines. Here, we review the role of immunotherapies in KSHV-associated diseases.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"55 ","pages":"Article 101249"},"PeriodicalIF":5.9,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Broadly neutralizing antibodies against HIV-1 and concepts for application 抗HIV-1的广泛中和抗体及其应用概念
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101211
Henning Gruell , Philipp Schommers
{"title":"Broadly neutralizing antibodies against HIV-1 and concepts for application","authors":"Henning Gruell ,&nbsp;Philipp Schommers","doi":"10.1016/j.coviro.2022.101211","DOIUrl":"10.1016/j.coviro.2022.101211","url":null,"abstract":"<div><p>Potent broadly neutralizing antibodies (bNAbs) targeting HIV-1 exhibit significant antiviral activity in humans. Recent advances have demonstrated that novel antibodies and bNAb combinations can effectively restrict the development of viral escape mutations. Moreover, passive immunization trials have provided proof-of-principle for bNAb-mediated prevention of infection with antibody-sensitive HIV-1 strains. In contrast, clinical studies investigating the activity of HIV-1 bNAbs on the latent reservoir failed to demonstrate substantial effects. Clinical adoption of HIV-1 bNAbs will require the development of more potent and broadly active antibodies as well as their implementation in optimized strategies to fully harness the capabilities of bNAbs. We review preclinical and clinical studies on HIV-1 bNAbs to highlight their potential and remaining limitations.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101211"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48524400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Emerging technologies in the study of the virome 病毒研究中的新兴技术。
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101231
Sophie E Smith , Wanqi Huang , Kawtar Tiamani , Magdalena Unterer , Mohammadali Khan Mirzaei , Li Deng
{"title":"Emerging technologies in the study of the virome","authors":"Sophie E Smith ,&nbsp;Wanqi Huang ,&nbsp;Kawtar Tiamani ,&nbsp;Magdalena Unterer ,&nbsp;Mohammadali Khan Mirzaei ,&nbsp;Li Deng","doi":"10.1016/j.coviro.2022.101231","DOIUrl":"10.1016/j.coviro.2022.101231","url":null,"abstract":"<div><p>Despite the growing interest in the microbiome in recent years, the study of the virome, the major part of which is made up of bacteriophages, is relatively underdeveloped compared with their bacterial counterparts. This is due in part to the lack of a universally conserved marker such as the 16S rRNA gene. For this reason, the development of metagenomic approaches was a major milestone in the study of the viruses in the microbiome or virome. However, it has become increasingly clear that these wet-lab methods have not yet been able to detect the full range of viruses present, and our understanding of the composition of the virome remains incomplete. In recent years, a range of new technologies has been developed to further our understanding. Direct RNA-Seq technologies bypass the need for cDNA synthesis, thus avoiding biases subjected to this step, which further expands our understanding of RNA viruses. The new generation of amplification methods could solve the low biomass issue relevant to most virome samples while reducing the error rate and biases caused by whole genome amplification. The application of long-read sequencing to virome samples can resolve the shortcomings of short-read sequencing in generating complete viral genomes and avoid the biases introduced by the assembly. Novel experimental methods developed to measure viruses' host range can help overcome the challenges of assigning hosts to many phages, specifically unculturable ones.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101231"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000402/pdfft?md5=942c14c91b8ff050f65841d391a117ad&pid=1-s2.0-S1879625722000402-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43593351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
The enigma of picobirnaviruses: viruses of animals, fungi, or bacteria? 小核糖核酸病毒之谜:动物病毒、真菌病毒还是细菌病毒?
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101232
David Wang
{"title":"The enigma of picobirnaviruses: viruses of animals, fungi, or bacteria?","authors":"David Wang","doi":"10.1016/j.coviro.2022.101232","DOIUrl":"10.1016/j.coviro.2022.101232","url":null,"abstract":"<div><p>Picobirnaviruses are small double-stranded RNA viruses first discovered in 1988 in stool samples from patients with diarrhea. It has generally been assumed that picobirnaviruses infect animal hosts and that they are potential agents of diarrhea, but there is still no direct evidence demonstrating that picobirnaviruses infect animals. In the metagenomic era, virome studies have broadened our understanding of picobirnavirus genetic diversity and genome organization, expanded the types of animals in which they have been detected, and identified novel associations with human disease. Most importantly, from the wealth of new sequencing data and comparative genomic analyses, a provocative new hypothesis has emerged that picobirnaviruses may not infect animals, but rather that they may infect evolutionarily simpler denizens of the gastrointestinal tract: bacteria and/or fungi. Depending on whether the true hosts of picobirnaviruses are animals, fungi, or bacteria, the mechanisms by which they impact animal biology will vary dramatically.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101232"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000414/pdfft?md5=0345c0a13c88835a50839bb83c1cf145&pid=1-s2.0-S1879625722000414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42959344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Asymmetry in icosahedral viruses 二十面体病毒的不对称性。
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101230
Joyce Jose , Susan L. Hafenstein
{"title":"Asymmetry in icosahedral viruses","authors":"Joyce Jose ,&nbsp;Susan L. Hafenstein","doi":"10.1016/j.coviro.2022.101230","DOIUrl":"10.1016/j.coviro.2022.101230","url":null,"abstract":"<div><p><span><span>Asymmetric structural elements are typically not readily visualized in icosahedral viruses that have other obvious symmetrical features and most asymmetry has gone unresolved for decades. Asymmetric features may be incorporated during assembly or maturation or develop during key steps in the infectious cycle of the virus. However, resolving asymmetric features requires abandoning capsid-wide symmetry averaging and relying on special applications during single-particle cryogenic </span>electron microscopy (cryo-EM) analysis. Thanks to the advances in the cryo-EM field, we are learning more about asymmetry of viruses. Here we summarize some of what is currently known about asymmetric structural features using as examples members of the </span><span><span><em>Togaviridae</em><em>, </em></span><em>Flaviviridae</em><span><em>, </em><em>Herpesviridae</em><span><em>, </em><em>Parvoviridae</em></span></span></span>, <span><em>and </em><em>Papillomaviridae</em></span>.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101230"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46270565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Editorial overview: 2022 “Virus–Host Interaction” section of Current Opinion in Virology 编辑概述:2022年《病毒学时事评论》“病毒-宿主相互作用”部分
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101229
Michaela U Gack , Susan C Baker
{"title":"Editorial overview: 2022 “Virus–Host Interaction” section of Current Opinion in Virology","authors":"Michaela U Gack ,&nbsp;Susan C Baker","doi":"10.1016/j.coviro.2022.101229","DOIUrl":"10.1016/j.coviro.2022.101229","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101229"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000384/pdfft?md5=3399a765bf2acc865556f6125d2df4bb&pid=1-s2.0-S1879625722000384-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41803183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The road to effective and accessible antibody therapies against Ebola virus 通往有效和可获得的埃博拉病毒抗体疗法之路
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101210
Hugues Fausther-Bovendo , Gary Kobinger
{"title":"The road to effective and accessible antibody therapies against Ebola virus","authors":"Hugues Fausther-Bovendo ,&nbsp;Gary Kobinger","doi":"10.1016/j.coviro.2022.101210","DOIUrl":"10.1016/j.coviro.2022.101210","url":null,"abstract":"<div><p>Ebola virus (EBOV) outbreaks can claim thousands of lives, cripple healthcare systems and local economies. Effective vaccines and treatments against EBOV are therefore needed to limit the impact of this deadly disease. In 2019, a hallmark clinical trial demonstrated the efficacy of monoclonal antibody (mAb) against EBOV. Despite, this recent success, survival of individuals with high viremia remains low. Effective immunotherapies against other Ebolavirus species are still under pre-clinical development. More importantly, the cost of immunotherapies is prohibitive to most individual and affected countries. Novel manufacturing and administration strategies of mAb protein or genetic information could substantially reduce the cost of immunotherapies; hence making them valuable tools against EBOV and other infectious agents.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101210"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000190/pdfft?md5=c0ae1bfacd20a3feddc57027002349ce&pid=1-s2.0-S1879625722000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46664778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral tolerance 果蝠作为高致病性亨尼帕病毒的天然宿主:抗病毒防御和病毒耐受性之间的平衡
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101228
Said Mougari, Claudia Gonzalez, Olivier Reynard, Branka Horvat
{"title":"Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral tolerance","authors":"Said Mougari,&nbsp;Claudia Gonzalez,&nbsp;Olivier Reynard,&nbsp;Branka Horvat","doi":"10.1016/j.coviro.2022.101228","DOIUrl":"https://doi.org/10.1016/j.coviro.2022.101228","url":null,"abstract":"<div><p>Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra and Nipah viruses of <em>Henipavirus</em> genus, which are highly pathogenic in humans and numerous other mammalian species. Despite being infected, bats present limited signs of disease but still retain the ability to transmit the infection to other susceptible hosts, presenting thus a permanent source of new viral outbreaks. Different mechanisms have evolved in fruit bats permitting them to efficiently control the <em>Henipavirus</em> infection. These mechanisms likely allow bats to establish an adequate equilibrium between viral tolerance and antiviral defense, enabling them thus to avoid both uncontrollable virus expansion as well as immunopathology linked to excessive antiviral responses.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101228"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000372/pdfft?md5=11dd534604a830e51f63c39e0726f6d3&pid=1-s2.0-S1879625722000372-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92016020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral toleranceInteractions between Henipaviruses and their natural host, fruit bats. 果蝠作为高致病性亨尼帕病毒的天然宿主:抗病毒防御和病毒耐受的平衡亨尼帕病毒与其天然宿主——果蝠之间的相互作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-05-06 DOI: 10.1016/j.coviro.2022.101228
S. Mougari, C. González, O. Reynard, B. Horvat
{"title":"Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral toleranceInteractions between Henipaviruses and their natural host, fruit bats.","authors":"S. Mougari, C. González, O. Reynard, B. Horvat","doi":"10.1016/j.coviro.2022.101228","DOIUrl":"https://doi.org/10.1016/j.coviro.2022.101228","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 1","pages":"101228"},"PeriodicalIF":5.9,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47913470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Mitigation of evolved bacterial resistance to phage therapy 减轻进化的细菌对噬菌体治疗的耐药性
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-04-01 DOI: 10.1016/j.coviro.2022.101201
Clara Torres-Barceló , Paul E Turner , Angus Buckling
{"title":"Mitigation of evolved bacterial resistance to phage therapy","authors":"Clara Torres-Barceló ,&nbsp;Paul E Turner ,&nbsp;Angus Buckling","doi":"10.1016/j.coviro.2022.101201","DOIUrl":"10.1016/j.coviro.2022.101201","url":null,"abstract":"<div><p><span>The ease with which bacteria can evolve resistance to phages is a key consideration for development of phage therapy<span>. Here, we review recent work on the different evolutionary and ecological approaches to mitigate the problem. The approaches are broadly categorised into two areas: </span></span><em>Minimising</em> evolved phage resistance; and <em>Directing</em> phage-resistance evolution towards therapeutically beneficial outcomes.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"53 ","pages":"Article 101201"},"PeriodicalIF":5.9,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39935115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信