Current opinion in virology最新文献

筛选
英文 中文
The enigmatic roles of Anelloviridae and Redondoviridae in humans 无绒病毒科和红多病毒科在人类中的神秘作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-08-01 DOI: 10.1016/j.coviro.2022.101248
Louis J Taylor , Emma L Keeler , Frederic D Bushman , Ronald G Collman
{"title":"The enigmatic roles of Anelloviridae and Redondoviridae in humans","authors":"Louis J Taylor ,&nbsp;Emma L Keeler ,&nbsp;Frederic D Bushman ,&nbsp;Ronald G Collman","doi":"10.1016/j.coviro.2022.101248","DOIUrl":"10.1016/j.coviro.2022.101248","url":null,"abstract":"<div><p><span><em>Anelloviridae</em></span> and <em>Redondoviridae</em><span><span><span><span> are virus families with small, circular, single-stranded DNA genomes that are common components of the </span>human virome. Despite their small </span>genome size of less than 5000 bases, they are remarkably successful — anelloviruses colonize over 90% of adult humans, while the recently discovered redondoviruses have been found at up to 80% prevalence in some populations. Anelloviruses are present in blood and many organs, while redondoviruses are found mainly in the ororespiratory tract. Despite their high prevalence, little is known about their biology or pathogenic potential. In this review, we discuss anelloviruses and redondoviruses and explore their enigmatic roles in </span>human health and disease.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"55 ","pages":"Article 101248"},"PeriodicalIF":5.9,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40531052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Editorial overview: Viral pathogenesis 编辑概述:病毒的发病机制
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-08-01 DOI: 10.1016/j.coviro.2022.101253
Antonio Bertoletti , Matteo Iannacone
{"title":"Editorial overview: Viral pathogenesis","authors":"Antonio Bertoletti ,&nbsp;Matteo Iannacone","doi":"10.1016/j.coviro.2022.101253","DOIUrl":"10.1016/j.coviro.2022.101253","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"55 ","pages":"Article 101253"},"PeriodicalIF":5.9,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40589798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: Anti-viral strategies: Human antibody immune response and antibody-based therapy against viruses 编辑概述:抗病毒策略:人类抗体免疫反应和基于抗体的病毒治疗
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-08-01 DOI: 10.1016/j.coviro.2022.101247
Qiao Wang, Zhong Huang
{"title":"Editorial overview: Anti-viral strategies: Human antibody immune response and antibody-based therapy against viruses","authors":"Qiao Wang,&nbsp;Zhong Huang","doi":"10.1016/j.coviro.2022.101247","DOIUrl":"10.1016/j.coviro.2022.101247","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"55 ","pages":"Article 101247"},"PeriodicalIF":5.9,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40482991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lying low-chromatin insulation in persistent DNA virus infection 持续性DNA病毒感染中的低染色质绝缘
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-08-01 DOI: 10.1016/j.coviro.2022.101257
Christy S Varghese, Joanna L Parish, Jack Ferguson
{"title":"Lying low-chromatin insulation in persistent DNA virus infection","authors":"Christy S Varghese,&nbsp;Joanna L Parish,&nbsp;Jack Ferguson","doi":"10.1016/j.coviro.2022.101257","DOIUrl":"10.1016/j.coviro.2022.101257","url":null,"abstract":"<div><p>Persistent virus infections are achieved when the intricate balance of virus replication, host-cell division and successful immune evasion is met. The genomes of persistent DNA viruses are either maintained as extrachromosomal episomes or can integrate into the host genome. Common to both these strategies of persistence is the chromatinisation of viral DNA by cellular histones which, like host DNA, are subject to epigenetic modification. Epigenetic repression of viral genes required for lytic replication occurs, while genes required for latent or persistent infection are maintained in an active chromatin state. Viruses utilise host-cell chromatin insulators, which function to maintain epigenetic boundaries and enforce this strict transcriptional programme. Here, we review insulator protein function in virus transcription control, focussing on CCCTC-binding factor (CTCF) and cofactors. We describe CTCF-dependent activities in virus transcription regulation through epigenetic and promoter–enhancer insulation, three-dimensional chromatin looping and manipulation of transcript splicing.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"55 ","pages":"Article 101257"},"PeriodicalIF":5.9,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000682/pdfft?md5=a934e4d351404403585abe735143b053&pid=1-s2.0-S1879625722000682-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9158256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Immunotherapy for KSHV-associated diseases kshv相关疾病的免疫治疗
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-08-01 DOI: 10.1016/j.coviro.2022.101249
Kathryn Lurain, Robert Yarchoan, Ramya Ramaswami
{"title":"Immunotherapy for KSHV-associated diseases","authors":"Kathryn Lurain,&nbsp;Robert Yarchoan,&nbsp;Ramya Ramaswami","doi":"10.1016/j.coviro.2022.101249","DOIUrl":"10.1016/j.coviro.2022.101249","url":null,"abstract":"<div><p><span>Kaposi sarcoma<span> herpesvirus (KSHV)-associated diseases (Kaposi sarcoma, multicentric Castleman disease<span><span>, primary effusion lymphoma<span>, and KSHV inflammatory cytokine syndrome) are associated with </span></span>immune suppression and dysregulation and loss of KSHV-specific immunity. These diseases are most frequent in people living with HIV as well as those with primary or iatrogenic immune deficiencies. KSHV itself can modulate the immune system via viral homologs of host cytokines or downregulation of immune-surface markers altering host </span></span></span>immune surveillance<span><span>. These factors make KSHV-associated diseases prime targets for immunotherapy approaches. Several agents have been studied or are under investigation in KSHV-associated diseases, including </span>monoclonal antibodies, immunomodulatory agents, and therapeutic cytokines. Here, we review the role of immunotherapies in KSHV-associated diseases.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"55 ","pages":"Article 101249"},"PeriodicalIF":5.9,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Broadly neutralizing antibodies against HIV-1 and concepts for application 抗HIV-1的广泛中和抗体及其应用概念
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101211
Henning Gruell , Philipp Schommers
{"title":"Broadly neutralizing antibodies against HIV-1 and concepts for application","authors":"Henning Gruell ,&nbsp;Philipp Schommers","doi":"10.1016/j.coviro.2022.101211","DOIUrl":"10.1016/j.coviro.2022.101211","url":null,"abstract":"<div><p>Potent broadly neutralizing antibodies (bNAbs) targeting HIV-1 exhibit significant antiviral activity in humans. Recent advances have demonstrated that novel antibodies and bNAb combinations can effectively restrict the development of viral escape mutations. Moreover, passive immunization trials have provided proof-of-principle for bNAb-mediated prevention of infection with antibody-sensitive HIV-1 strains. In contrast, clinical studies investigating the activity of HIV-1 bNAbs on the latent reservoir failed to demonstrate substantial effects. Clinical adoption of HIV-1 bNAbs will require the development of more potent and broadly active antibodies as well as their implementation in optimized strategies to fully harness the capabilities of bNAbs. We review preclinical and clinical studies on HIV-1 bNAbs to highlight their potential and remaining limitations.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101211"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48524400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Emerging technologies in the study of the virome 病毒研究中的新兴技术。
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101231
Sophie E Smith , Wanqi Huang , Kawtar Tiamani , Magdalena Unterer , Mohammadali Khan Mirzaei , Li Deng
{"title":"Emerging technologies in the study of the virome","authors":"Sophie E Smith ,&nbsp;Wanqi Huang ,&nbsp;Kawtar Tiamani ,&nbsp;Magdalena Unterer ,&nbsp;Mohammadali Khan Mirzaei ,&nbsp;Li Deng","doi":"10.1016/j.coviro.2022.101231","DOIUrl":"10.1016/j.coviro.2022.101231","url":null,"abstract":"<div><p>Despite the growing interest in the microbiome in recent years, the study of the virome, the major part of which is made up of bacteriophages, is relatively underdeveloped compared with their bacterial counterparts. This is due in part to the lack of a universally conserved marker such as the 16S rRNA gene. For this reason, the development of metagenomic approaches was a major milestone in the study of the viruses in the microbiome or virome. However, it has become increasingly clear that these wet-lab methods have not yet been able to detect the full range of viruses present, and our understanding of the composition of the virome remains incomplete. In recent years, a range of new technologies has been developed to further our understanding. Direct RNA-Seq technologies bypass the need for cDNA synthesis, thus avoiding biases subjected to this step, which further expands our understanding of RNA viruses. The new generation of amplification methods could solve the low biomass issue relevant to most virome samples while reducing the error rate and biases caused by whole genome amplification. The application of long-read sequencing to virome samples can resolve the shortcomings of short-read sequencing in generating complete viral genomes and avoid the biases introduced by the assembly. Novel experimental methods developed to measure viruses' host range can help overcome the challenges of assigning hosts to many phages, specifically unculturable ones.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101231"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000402/pdfft?md5=942c14c91b8ff050f65841d391a117ad&pid=1-s2.0-S1879625722000402-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43593351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
The enigma of picobirnaviruses: viruses of animals, fungi, or bacteria? 小核糖核酸病毒之谜:动物病毒、真菌病毒还是细菌病毒?
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101232
David Wang
{"title":"The enigma of picobirnaviruses: viruses of animals, fungi, or bacteria?","authors":"David Wang","doi":"10.1016/j.coviro.2022.101232","DOIUrl":"10.1016/j.coviro.2022.101232","url":null,"abstract":"<div><p>Picobirnaviruses are small double-stranded RNA viruses first discovered in 1988 in stool samples from patients with diarrhea. It has generally been assumed that picobirnaviruses infect animal hosts and that they are potential agents of diarrhea, but there is still no direct evidence demonstrating that picobirnaviruses infect animals. In the metagenomic era, virome studies have broadened our understanding of picobirnavirus genetic diversity and genome organization, expanded the types of animals in which they have been detected, and identified novel associations with human disease. Most importantly, from the wealth of new sequencing data and comparative genomic analyses, a provocative new hypothesis has emerged that picobirnaviruses may not infect animals, but rather that they may infect evolutionarily simpler denizens of the gastrointestinal tract: bacteria and/or fungi. Depending on whether the true hosts of picobirnaviruses are animals, fungi, or bacteria, the mechanisms by which they impact animal biology will vary dramatically.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101232"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000414/pdfft?md5=0345c0a13c88835a50839bb83c1cf145&pid=1-s2.0-S1879625722000414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42959344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Asymmetry in icosahedral viruses 二十面体病毒的不对称性。
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101230
Joyce Jose , Susan L. Hafenstein
{"title":"Asymmetry in icosahedral viruses","authors":"Joyce Jose ,&nbsp;Susan L. Hafenstein","doi":"10.1016/j.coviro.2022.101230","DOIUrl":"10.1016/j.coviro.2022.101230","url":null,"abstract":"<div><p><span><span>Asymmetric structural elements are typically not readily visualized in icosahedral viruses that have other obvious symmetrical features and most asymmetry has gone unresolved for decades. Asymmetric features may be incorporated during assembly or maturation or develop during key steps in the infectious cycle of the virus. However, resolving asymmetric features requires abandoning capsid-wide symmetry averaging and relying on special applications during single-particle cryogenic </span>electron microscopy (cryo-EM) analysis. Thanks to the advances in the cryo-EM field, we are learning more about asymmetry of viruses. Here we summarize some of what is currently known about asymmetric structural features using as examples members of the </span><span><span><em>Togaviridae</em><em>, </em></span><em>Flaviviridae</em><span><em>, </em><em>Herpesviridae</em><span><em>, </em><em>Parvoviridae</em></span></span></span>, <span><em>and </em><em>Papillomaviridae</em></span>.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101230"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46270565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Editorial overview: 2022 “Virus–Host Interaction” section of Current Opinion in Virology 编辑概述:2022年《病毒学时事评论》“病毒-宿主相互作用”部分
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-06-01 DOI: 10.1016/j.coviro.2022.101229
Michaela U Gack , Susan C Baker
{"title":"Editorial overview: 2022 “Virus–Host Interaction” section of Current Opinion in Virology","authors":"Michaela U Gack ,&nbsp;Susan C Baker","doi":"10.1016/j.coviro.2022.101229","DOIUrl":"10.1016/j.coviro.2022.101229","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101229"},"PeriodicalIF":5.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000384/pdfft?md5=3399a765bf2acc865556f6125d2df4bb&pid=1-s2.0-S1879625722000384-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41803183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信