{"title":"Decoding histone 3 lysine methylation: Insights into seed germination and flowering","authors":"Saqlain Haider, Sara Farrona","doi":"10.1016/j.pbi.2024.102598","DOIUrl":"10.1016/j.pbi.2024.102598","url":null,"abstract":"<div><p>Histone lysine methylation is a highly conserved epigenetic modification across eukaryotes that contributes to creating different dynamic chromatin states, which may result in transcriptional changes. Over the years, an accumulated set of evidence has shown that histone methylation allows plants to align their development with their surroundings, enabling them to respond and memorize past events due to changes in the environment. In this review, we discuss the molecular mechanisms of histone methylation in plants. Writers, readers, and erasers of Arabidopsis histone methylation marks are described with an emphasis on their role in two of the most important developmental transition phases in plants, seed germination and flowering. Further, the crosstalk between different methylation marks is also discussed. An overview of the mechanisms of histone methylation modifications and their biological outcomes will shed light on existing research gaps and may provide novel perspectives to increase crop yield and resistance in the era of global climate change.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102598"},"PeriodicalIF":8.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952662400089X/pdfft?md5=cda1a6216228b7d690385d3ca17946a5&pid=1-s2.0-S136952662400089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microtubule simulations in plant biology: A field coming to maturity","authors":"Marco Saltini, Eva E. Deinum","doi":"10.1016/j.pbi.2024.102596","DOIUrl":"10.1016/j.pbi.2024.102596","url":null,"abstract":"<div><p>The plant cortical microtubule array is an important determinant of cell wall structure and, therefore, plant morphology and physiology. The array consists of dynamic microtubules interacting through frequent collisions. Since the discovery by Dixit and Cyr (2004) that the outcome of such collisions depends on the collision angle, computer simulations have been indispensable in studying array behaviour. Over the last decade, the available simulation tools have drastically improved: multiple high-quality simulation platforms exist with specific strengths and applications. Here, we review how these platforms differ on the critical aspects of microtubule nucleation, flexibility, and local orienting cues; and how such differences affect array behaviour. Building upon concepts and control parameters from theoretical models of collective microtubule behaviour, we conclude that all these factors matter in the debate about what is most important for orienting the array: local cues like mechanical stresses or global cues deriving from the cell geometry.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102596"},"PeriodicalIF":8.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000876/pdfft?md5=470eec62e61f9cc4bf4080afa30311af&pid=1-s2.0-S1369526624000876-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms of heat stress-induced transcriptional memory","authors":"Loris Pratx , Tim Crawford , Isabel Bäurle","doi":"10.1016/j.pbi.2024.102590","DOIUrl":"10.1016/j.pbi.2024.102590","url":null,"abstract":"<div><p>Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102590"},"PeriodicalIF":8.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vandana Gurung, Sarita Muñoz-Gómez, Daniel S. Jones
{"title":"Putting heads together: Developmental genetics of the Asteraceae capitulum","authors":"Vandana Gurung, Sarita Muñoz-Gómez, Daniel S. Jones","doi":"10.1016/j.pbi.2024.102589","DOIUrl":"https://doi.org/10.1016/j.pbi.2024.102589","url":null,"abstract":"<div><p>Inflorescence architecture is highly variable across plant lineages yet is critical for facilitating reproductive success. The capitulum-type inflorescence of the Asteraceae is marked as a key morphological innovation that preceded the family's diversification and expansion. Despite its evolutionary significance, our understanding of capitulum development and evolution is limited. This review highlights our current perspective on capitulum evolution through the lens of both its molecular and developmental underpinnings. We attempt to summarize our understanding of the capitulum by focusing on two key characteristics: patterning (arrangement of florets on a capitulum) and floret identity specification. Note that these two features are interconnected such that the identity of florets depends on their position along the inflorescence axis. Phytohormones such as auxin seemingly determine both pattern progression and floret identity specification through unknown mechanisms. Floret morphology in a head is controlled by differential expression of floral symmetry genes regulating floret identity specification. We briefly summarize the applicability of the ABCE quartet model of flower development in regulating the floret organ identity of a capitulum in Asteraceae. Overall, there have been promising advancements in our understanding of capitula; however, comprehensive functional genetic analyses are necessary to fully dissect the molecular pathways and mechanisms involved in capitulum development.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102589"},"PeriodicalIF":8.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parental dialectic: Epigenetic conversations in endosperm","authors":"Souraya Khouider , Mary Gehring","doi":"10.1016/j.pbi.2024.102591","DOIUrl":"10.1016/j.pbi.2024.102591","url":null,"abstract":"<div><p>Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102591"},"PeriodicalIF":8.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development","authors":"Katsutoshi Tsuda","doi":"10.1016/j.pbi.2024.102594","DOIUrl":"10.1016/j.pbi.2024.102594","url":null,"abstract":"<div><p>The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102594"},"PeriodicalIF":8.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blooming balloons: Searching for mechanisms of the inflated calyx","authors":"Jia He , Joyce Van Eck , Zachary B. Lippman","doi":"10.1016/j.pbi.2024.102595","DOIUrl":"10.1016/j.pbi.2024.102595","url":null,"abstract":"<div><p>Studying morphological novelties offers special insights into developmental biology and evolution. The inflated calyx syndrome (ICS) is a largely unrecognized but fascinating feature of flower development, where sepals form balloon-like husks that encapsulate fruits. Despite its independent emergence in many lineages of flowering plants, the genetic and molecular mechanisms of ICS remain unknown. Early studies in the Solanaceae genus <em>Physalis</em> put forth key roles of MADS-box genes in ICS. However, recent work suggests these classical floral identity transcription factors were false leads. With newfound capabilities that allow rapid development of genetic systems through genomics and genome editing, <em>Physalis</em> has re-emerged as the most tractable model species for dissecting ICS. This review revisits current understanding of ICS and highlights how recent advancements enable a reset in the search for genetic and molecular mechanisms using unbiased, systematic approaches.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102595"},"PeriodicalIF":8.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of DNA methylation and its impact on plant embryogenesis","authors":"Jennifer M. Frost , Ji Hoon Rhee , Yeonhee Choi","doi":"10.1016/j.pbi.2024.102593","DOIUrl":"10.1016/j.pbi.2024.102593","url":null,"abstract":"<div><p>Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102593"},"PeriodicalIF":8.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000840/pdfft?md5=b5e086b0ba1aa6b46eadfe00a665c8bb&pid=1-s2.0-S1369526624000840-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How chromatin senses plant hormones","authors":"Zhengyao Shao , Chia-Yang Chen , Hong Qiao","doi":"10.1016/j.pbi.2024.102592","DOIUrl":"10.1016/j.pbi.2024.102592","url":null,"abstract":"<div><p>Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102592"},"PeriodicalIF":8.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000839/pdfft?md5=4518fa0393debbb50449d459ea058099&pid=1-s2.0-S1369526624000839-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiajia Li , Xiani Yao , Huan Lai , Xuelian Zhang , Jinshun Zhong
{"title":"The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy","authors":"Jiajia Li , Xiani Yao , Huan Lai , Xuelian Zhang , Jinshun Zhong","doi":"10.1016/j.pbi.2024.102574","DOIUrl":"10.1016/j.pbi.2024.102574","url":null,"abstract":"<div><p>Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy <em>per se</em> is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102574"},"PeriodicalIF":8.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}