Felicia C. Wolters , Elena Del Pup , Kumar Saurabh Singh , Klaas Bouwmeester , M. Eric Schranz , Justin J.J. van der Hooft , Marnix H. Medema
{"title":"Pairing omics to decode the diversity of plant specialized metabolism","authors":"Felicia C. Wolters , Elena Del Pup , Kumar Saurabh Singh , Klaas Bouwmeester , M. Eric Schranz , Justin J.J. van der Hooft , Marnix H. Medema","doi":"10.1016/j.pbi.2024.102657","DOIUrl":null,"url":null,"abstract":"<div><div>Plants have evolved complex bouquets of specialized natural products that are utilized in medicine, agriculture, and industry. Untargeted natural product discovery has benefitted from growing plant omics data resources. Yet, plant genome complexity limits the identification and curation of biosynthetic pathways via single omics. Pairing multi-omics types within experiments provides multiple layers of evidence for biosynthetic pathway mining. The extraction of paired biological information facilitates connecting genes to transcripts and metabolites, especially when captured across time points, conditions and chemotypes. Experimental design requires specific adaptations to enable effective paired-omics analysis. Ultimately, metadata standards are required to support the integration of paired and unpaired public datasets and to accelerate collaborative efforts for natural product discovery in the plant research community.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102657"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001481","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants have evolved complex bouquets of specialized natural products that are utilized in medicine, agriculture, and industry. Untargeted natural product discovery has benefitted from growing plant omics data resources. Yet, plant genome complexity limits the identification and curation of biosynthetic pathways via single omics. Pairing multi-omics types within experiments provides multiple layers of evidence for biosynthetic pathway mining. The extraction of paired biological information facilitates connecting genes to transcripts and metabolites, especially when captured across time points, conditions and chemotypes. Experimental design requires specific adaptations to enable effective paired-omics analysis. Ultimately, metadata standards are required to support the integration of paired and unpaired public datasets and to accelerate collaborative efforts for natural product discovery in the plant research community.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.