{"title":"Organ symmetry establishment during gynoecium development","authors":"Iqra Jamil , Ayanava Giri , Laila Moubayidin","doi":"10.1016/j.pbi.2025.102732","DOIUrl":"10.1016/j.pbi.2025.102732","url":null,"abstract":"<div><div>Symmetry is a key factor in the morphological diversity and reproductive success of angiosperms (flowering plants). The gynoecium, the female reproductive organ of the flower, displays remarkable variation in symmetry types, ranging from bilateral to radial, from its base (ovary) to its apex (style). Proper tissue growth and differentiation occur along the body axes to form three-dimensional structures and establish symmetric forms within the organ.</div><div>In this review, we summarise the latest understanding on cellular, molecular and genetic mechanisms governing pivotal symmetry changes during gynoecium development and highlight unresolved questions and potential avenues for future research. Understanding these processes provides valuable insights into the biological networks that regulate symmetry foundation in plant organs, contributing to a broader evolutionary and developmental perspective on plant morphogenesis.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143912026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flowering time regulation through the lens of evolution","authors":"Bo Zhao , Dong Zhai , Jia-Wei Wang","doi":"10.1016/j.pbi.2025.102734","DOIUrl":"10.1016/j.pbi.2025.102734","url":null,"abstract":"<div><div>Flowering, the onset of reproductive development, marks a critical transition in the angiosperm life cycle. In the model plant <em>Arabidopsis thaliana</em>, the process is tightly regulated by a complex network of approximately 300 genes organized into distinct pathways. This mini-review examines the genetic and molecular mechanisms regulating flowering time from an evolutionary perspective. Our analysis reveals that genes involved in the age and photoperiod pathways are evolutionarily ancient and highly conserved across bryophytes and vascular plants. In contrast, other regulatory modules appear to have evolved more recently, likely through the repurposing of existing genes or adaptations to environmental changes. We propose that future research should shift away from studying flowering regulation mechanisms in individual model plants to exploring the evolution of flowering time pathways and their underlying drivers. Adopting an evolutionary perspective may ultimately illuminate the fundamental principles governing the timing of reproductive development in plants.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102734"},"PeriodicalIF":8.3,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All roads lead to dome: Multicellular dynamics during de novo meristem establishment in shoot regeneration","authors":"Yuki Doll, Momoko Ikeuchi","doi":"10.1016/j.pbi.2025.102733","DOIUrl":"10.1016/j.pbi.2025.102733","url":null,"abstract":"<div><div>Shoot apical meristems (SAMs) harbor persistent stem cells and give rise to above-ground organs throughout life. In tissue culture-based shoot regeneration, a subpopulation of pluripotent callus cells is specified into SAMs. How callus cells decide whether or not to become SAMs stands as an important question in developmental biology. Furthermore, the developmental basis underlying the <em>de novo</em> construction of dome-shaped SAMs remained largely unknown. Recent high-resolution analyses have revealed the spatiotemporal dynamics of cell fate determination and meristem establishment during shoot regeneration. Cell fates to become meristem are actively determined through interactions between neighboring cells, rather than by cell-autonomous fate transition. Inter-cell layer communication via mobile signal or mechanical cue may enable meristem construction. By integrating recent insights from the two-step tissue culture system in Arabidopsis together with other shoot regeneration systems, we depict the process of <em>de novo</em> meristem establishment as a dynamic multicellular system.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102733"},"PeriodicalIF":8.3,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143902301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Converging on long and short: The genetics, molecular biology and evolution of heterostyly","authors":"Lele Shang, Karol Gad, Michael Lenhard","doi":"10.1016/j.pbi.2025.102731","DOIUrl":"10.1016/j.pbi.2025.102731","url":null,"abstract":"<div><div>Heterostyly is a fascinating floral polymorphism that enhances outcrossing. In heterostylous species the flowers of the two or three morphs differ in multiple traits, including reciprocal reproductive-organ placement and self-incompatibility. These traits are controlled by individual genes within an <em>S-</em>locus supergene, whose suppressed recombination ensures the coordinated inheritance of the morph phenotypes. Recent breakthroughs about the genetic and molecular basis of heterostyly have resulted from studies on many independently evolved instances and include the following: The <em>S</em>-locus is a hemizygous region comprising several individual genes in multiple heterostylous taxa. In many systems, a single gene within the <em>S</em>-locus plays dual roles in regulating both female traits of style length and self-incompatibility type, often involving brassinosteroid signalling. The <em>S-</em>loci have evolved through stepwise or segmental duplication in different lineages. The frequent breakdown of heterostyly generally results from individual mutations at the <em>S-</em>locus and leads to a genomic selfing syndrome. These discoveries suggest convergent and genetically constrained evolution of heterostyly at the molecular level.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102731"},"PeriodicalIF":8.3,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143902302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Barreto , Elias Feitosa-Araujo , Alisdair R. Fernie , Markus Schwarzländer
{"title":"How to turbo charge respiration – thermogenic metabolism in plants","authors":"Pedro Barreto , Elias Feitosa-Araujo , Alisdair R. Fernie , Markus Schwarzländer","doi":"10.1016/j.pbi.2025.102730","DOIUrl":"10.1016/j.pbi.2025.102730","url":null,"abstract":"<div><div>Plant metabolism is remarkably flexible. Rapid changes in the rate and mode of primary metabolism are essential to meet the demands of plants under changeable conditions. While it is evident that photosynthetic metabolism must be regulated to match changes in illumination, the principles that govern the regulation of respiratory metabolism have remained less obvious, even though plant respiratory rates can vary profoundly. An extreme transition in respiratory metabolism occurs when a thermogenic plant tissue enters the phase of heat generation. Here, we review our current understanding of what is required to re-model plant metabolism toward thermogenesis and highlight recent advances. We propose plant thermogenesis as a model to uncover novel mechanisms that control respiration rate. Those mechanisms may aid engineering carbon use efficiency and improve stress resilience in plants and beyond.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102730"},"PeriodicalIF":8.3,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143894454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alkaloid evolution in the Solanaceae","authors":"Pablo A. Pérez-Mesa , Federico Roda","doi":"10.1016/j.pbi.2025.102727","DOIUrl":"10.1016/j.pbi.2025.102727","url":null,"abstract":"<div><div>Alkaloids are a diverse class of nitrogen-containing metabolites involved in key biotic interactions, such as defense against herbivores and pathogens and the recruitment of pollinators. The Solanaceae family has served as a model for studying alkaloid evolution, due to the varied types of alkaloids it produces, such as nicotinoids, tropane alkaloids (TAs), steroidal glycoalkaloids (SGAs), and capsaicinoids. Recent multi-omics and comparative genomics studies have expanded our understanding of the genetic and evolutionary mechanisms driving alkaloid diversification. These metabolites are produced by specific clades within the family, often in response to selective pressures such as herbivore and pathogen coevolution, which shape alkaloid profiles through both diversification and reduction. Evolutionary processes like genome duplications, rearrangements, and introgressions have also played a significant role in the emergence of new alkaloid pathways, promoting metabolic adaptations. The Solanaceae family exhibits both convergence and divergence in alkaloid production, with certain alkaloids arising independently in different lineages. Notably, biosynthetic gene clusters (BGCs) and gene duplication have been linked to alkaloid diversification, with the structure and function of these regions driving metabolic variability. Furthermore, human domestication of plants such as tobacco and chili peppers has influenced the alkaloid profiles of crop species, particularly in terms of pest resistance and flavor. The evolution of alkaloids in this family has not only shaped plant defense mechanisms but also has important implications for human health and agriculture. This review highlights the dynamic interplay between genetics, ecology, and human influence in the evolution of alkaloids within the Solanaceae family.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102727"},"PeriodicalIF":8.3,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143874945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Kenosis Emmanuelle Lachica , Mutsumi Watanabe , Shigehiko Kanaya , Alisdair R. Fernie , Takayuki Tohge
{"title":"Prospects for functional genomics of genes involved in coffee-specialized metabolism through cross-species integrative omics","authors":"Maria Kenosis Emmanuelle Lachica , Mutsumi Watanabe , Shigehiko Kanaya , Alisdair R. Fernie , Takayuki Tohge","doi":"10.1016/j.pbi.2025.102729","DOIUrl":"10.1016/j.pbi.2025.102729","url":null,"abstract":"<div><div>Coffee (<em>Coffea</em> spp.) is one of the most economically important crop species and serves as a rich source of bioactive specialized (secondary) metabolites with various health-promoting properties. Advances in analytical food chemistry and phytochemistry have elucidated an extensive and structurally diverse specialized metabolism in coffee beans, much of which contributes to both organoleptic attributes and adaptive physiological responses in coffee plants. Recent developments in omics-driven methodologies have provided new insights into both coffee metabolism and breeding strategies, particularly those aimed at enhancing both quality traits and environmental resilience. Comparative genomic analyses across <em>Coffea</em> species and cultivars have facilitated the detection of metabolic polymorphisms, enabling inter- and intra-species assessments of biosynthetic pathway variation and the refinement of biosynthetic frameworks for further functional genomics approaches. Such approaches yield critical information regarding the genetic and biochemical determinants underlying specialized metabolite accumulations, which can be directly applied for targeted metabolic engineering and crop improvement. Moreover, cross-species comparative omics and multi-omics integrative analyses, particularly in relation to phylogenetically relevant taxa such as Solanaceae species, exemplified by the model crop tomato (<em>Solanum lycopersicum</em>), provide valuable translational insights into conserved and divergent metabolic architectures.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102729"},"PeriodicalIF":8.3,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Xiao , Wei Xia , Zhuang Yang , Junjie Zhou, Jie Luo
{"title":"Advances in the analysis and application of metabolites from tropical plants","authors":"Yong Xiao , Wei Xia , Zhuang Yang , Junjie Zhou, Jie Luo","doi":"10.1016/j.pbi.2025.102728","DOIUrl":"10.1016/j.pbi.2025.102728","url":null,"abstract":"<div><div>Tropical regions are characterized by a rich diversity of plant species and unique growth environments, resulting in the production of numerous important medicinal metabolites. This review summarizes the recent progress in the analysis of metabolites from tropical plants. These plants have developed specific metabolites that aid their adaptation to challenging environments, and these compounds hold significant medicinal value. The review further examines the genetic biosynthetic pathways that contribute to the production of these compounds, providing insights into the mechanisms of their synthesis. Additionally, it discusses future prospects for the utilization of these metabolites, exploring potential advancements in biotechnological approaches to enhance their production and application. By emphasizing the significance of tropical plants as reservoirs of bioactive substances, this review aims to encourage further exploration and sustainable use of these important natural resources in the field of medicine and beyond.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102728"},"PeriodicalIF":8.3,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coordination and regulation of vascular development in roots","authors":"Yuki Kondo , Kyoko Ohashi-Ito","doi":"10.1016/j.pbi.2025.102726","DOIUrl":"10.1016/j.pbi.2025.102726","url":null,"abstract":"<div><div>Vascular tissue is crucial for the transport of substances and physical support in most plants. Vascular development in roots encompasses cell proliferation, pattern formation, cell specification, and differentiation. In the roots, the positions and timing of cell proliferation and the differentiation of xylem and phloem cells are strictly controlled in order to achieve continuous vascular transport. This review describes recent advances in our understanding of the molecular mechanisms of vascular development, with a particular focus on the modulators of each of the above aspects in <em>Arabidopsis</em> roots. In particular, recent technological advances such as genome editing technology and single-cell analysis have led to the discovery of important genes that control vascular development. This paper shows that factors such as hormones, peptides, transcription factors, and microRNAs interact in a multilayered manner to modulate key regulators of root vascular development, ensuring stable vascular formation.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102726"},"PeriodicalIF":8.3,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joohyun Kang , Kyungyoon Kim , Jooyeon Woo , Thanh Ha Thi Do , Yuree Lee
{"title":"Recent insights into air space formation in plant shoots","authors":"Joohyun Kang , Kyungyoon Kim , Jooyeon Woo , Thanh Ha Thi Do , Yuree Lee","doi":"10.1016/j.pbi.2025.102725","DOIUrl":"10.1016/j.pbi.2025.102725","url":null,"abstract":"<div><div>An adequate supply of oxygen and carbon dioxide is essential for plant survival. Although plant cell walls are somewhat porous, their hydrated nature hampers gas diffusion. Furthermore, the cuticular wax coating the epidermal layer of aerial tissues strongly inhibits gas exchange. Because plants lack specialized systems that bind and transport gases, gases must be directly delivered to the target cells. This necessitates the establishment of effective gas transport pathways connecting stomata to the target cells. However, our understanding of this process remains fragmented. Recent studies have shed light on the mechanisms underlying air space formation in various model and non-model plant species. This review aims to consolidate these findings, to provide a comprehensive overview of our current understanding of air space formation, and to outline potential avenues for future research that will address remaining gaps in knowledge.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102725"},"PeriodicalIF":8.3,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}