{"title":"Commentary on the Obtention of Semi-Synthetic Derivatives from Natural Products for Medicinal Applications: Advances, Challenges, and Perspectives.","authors":"Musso Florencia, Biscussi Brunella","doi":"10.2174/0109298673336208241014102943","DOIUrl":"https://doi.org/10.2174/0109298673336208241014102943","url":null,"abstract":"<p><p>Plants have historically been a primary source of medicines due to their diverse molecular and structural composition. Plant metabolism, comprising primary and secondary processes, produces primary metabolites crucial for growth and secondary metabolites, or natural products (NPs), with specific biological functions. These small molecules are instrumental in pharmacology for their ability to penetrate biological barriers and interact with intracellular targets. The structural complexity and limited availability of NPs have led to research focusing on enhancing their diversity through semi-synthesis. In this commentary, examples of various semisynthetic derivatives of NPs obtained through different synthetic strategies, such as organic semi-synthesis or combinatorial chemistry, are cited. Additionally, the importance of developing hybrid molecules based on the combination of two or more distinct pharmacophores is emphasized. This strategy has been widely implemented to obtain new multitarget drugs applicable to the treatment of multifactorial neurodegenerative diseases, where stimulating the cholinergic system by modulating different therapeutic targets is crucial. However, challenges, such as structural complexity, raw material availability, and the need for precise synthetic methods, persist. Innovations in synthetic routes, sustainable harvesting, and biotechnological advances are critical to overcoming these barriers. The integration of omics technologies, green chemistry principles, and global collaboration is essential to maximize the potential of NPs in drug development, ensuring sustainable and efficient production of new therapeutics.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Zhu, Mengyao Chen, Lin Xie, Yijun Pan, Yuntian Yang, Guoxing Wan
{"title":"Mechanism Exploration of Astaxanthin in the Treatment of Adriamycin-induced Cardiotoxicity Based on Network Pharmacology and Experimental Validation.","authors":"Yu Zhu, Mengyao Chen, Lin Xie, Yijun Pan, Yuntian Yang, Guoxing Wan","doi":"10.2174/0109298673329567241014071914","DOIUrl":"https://doi.org/10.2174/0109298673329567241014071914","url":null,"abstract":"<p><strong>Introduction: </strong>Astaxanthin (AXT), a natural antioxidant recognized for its therapeutic potential in cancer and cardiovascular diseases, holds promise in mitigating adriamycin-induced cardiotoxicity (AIC). Nevertheless, the underlying mechanisms of AXT in AIC mitigation remain to be elucidated. Consequently, this study endeavors to elucidate the mechanism of AXT against AIC, employing an integrated approach.</p><p><strong>Methods: </strong>Network pharmacology, molecular docking, and molecular dynamics simulations were harnessed to explore the molecular mechanism underlying AXT's action against AIC. Furthermore, the in-vitro AIC model was established with the H9c2 cell to generate transcriptome data for validation.</p><p><strong>Results: </strong>A total of 533 putative AXT targets and 1478 AIC-related genes were initially screened by database retrieval and bioinformatics analysis. A total of 248 potential targets of AXT against AIC and several signaling pathways were identified by network pharmacology and enrichment analysis. Two core genes (CCL2 and NOS3) and the AGE-RAGE signaling pathway in diabetic complications were further highlighted by transcriptome validation based on the AIC in-vitro model. Additionally, molecular docking and dynamics analyses supported the robust binding affinity of AXT with the core targets.</p><p><strong>Conclusion: </strong>The study suggested that AXT might ameliorate AIC through the inhibition of CCL2 and NOS3 as well as AGE-RAGE signaling, which provide a theoretical basis for the development of a strategy against AIC.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid/Chimera Drugs - Part 1 - Drug Hybrids Affecting Diseases of the Central Nervous System.","authors":"Abraham Nudelman","doi":"10.2174/0109298673305662240702071354","DOIUrl":"https://doi.org/10.2174/0109298673305662240702071354","url":null,"abstract":"<p><p>This review, focused on hybrid drugs, is the third in a series of reviews, where the first two reviews dealt with a) dimeric drugs, b) mutual prodrugs - codrugs. The compounds designated as hybrids are comprised of two (and sometimes three) biologically active entities, linked by metabolically stable bridges. In some cases, one of the two components of the hybrids serves as a carrier for the second component, and most frequently, the components elicit their individual biological properties, which are commonly synergistic or complementary. Due to the very large number of publications dealing with hybrid drugs, the present review is restricted to hybrids acting in the central nervous system. Future reviews will cover fields such as antimicrobial, anticancer, and antiviral hybrids, and cardiovascular active hybrids. The selected articles reviewed herein were published between the years 2000-2022 with partial coverage of the year 2023.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, Synthesis, Molecular Docking, Pharmacokinetic Properties, and Molecular Dynamics Simulation of Sulfonyl Derivatives of Benzimidazole against Parkinson's Disease.","authors":"Subarna Roy, Subhankar Basak, Shristi Roy, Paromita Dey, Hema Barman, Bhagat Singh, Kaushik Sarkar, Subhadeep Sen, Rajesh Kumar Das, Sudhan Debnath, Goutam Biswas","doi":"10.2174/0109298673337912241007120510","DOIUrl":"https://doi.org/10.2174/0109298673337912241007120510","url":null,"abstract":"<p><strong>Introduction: </strong>The disability and mortality related to Parkinson's disease (PD), a neurodegenerative disease, are increasing globally at a faster rate than other neurological disorders. With no permanent cure for PD, there is an urgent need to develop novel and effective anti-PD drugs.</p><p><strong>Method: </strong>Targeting monoamine oxidases (MAO), which catalyze the breakdown of neurotransmitters, is one way to treat neurodegenerative diseases. In this context, an initial molecular docking of twenty designed sulfonyl derivatives of benzimidazole against monoamine oxidase B (MAO-B) associated with PD was conducted using AutoDock Vina.</p><p><strong>Result: </strong>The results were compared with those of the conventional inhibitors, selegiline and rasagiline. Based on the docking score, the in-silico pharmacokinetic properties (ADME), drug-likeness, and toxicity profiles of the newly synthesized molecules were examined using SwissADME, PreADMET, ProTox-3.0, vNN, and ADMETlab web tools. Then, twelve potential derivatives were synthesized and characterized by IR, 1H-NMR, 13C-NMR, 19F-NMR (for some compounds), and mass spectrometry. Derivatives 2cj and 1bj were the two molecules having the best binding affinity of -11.9 and -11.8 kcal/mol, respectively, against MAOB, exhibiting a higher binding affinity compared to that of some commercially available drugs. A 50 ns MD simulation run was performed to observe the stability of the top two docked complexes, MAO-B-2cj and MAO-B-1bj, in order to further validate the efficacy of those two substances. Moreover, the MM-PBSA method was used to calculate the final, binding free energy of the simulated (MAO-B-2cj) complex.</p><p><strong>Conclusion: </strong>This study indicates that the binding affinity of most of the hits was superior to that of known MAO inhibitors; therefore, these newly synthesized benzimidazole derivatives may be developed into essential drug candidates for the treatment of PD.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution Of Microrna Counts Across Human Chromosomes.","authors":"Hsiuying Wang","doi":"10.2174/0109298673341375241009105556","DOIUrl":"https://doi.org/10.2174/0109298673341375241009105556","url":null,"abstract":"<p><strong>Introduction: </strong>microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in gene regulation. miRNAs are transcribed from DNA sequences into primary miRNAs and then processed into precursor miRNAs and mature miRNAs. miRNA gene counts in chromosomes for different species have been studied.</p><p><strong>Method: </strong>Certain chromosomes have higher numbers of miRNA genes in all species, such as the X chromosome, while the Y chromosome has the fewest or no miRNA genes. miRNA counts in different chromosomes might have a positive correlation with coding gene counts in many species. In this study, a regression model was used to find the relationship between the miRNA count and the coding gene count across human chromosomes, and miRNA counts for 23 human chromosomes were predicted based on this regression model. In addition, the chromosome locations for the miRNA biomarkers of major depression, diabetes, Parkinson's disease, and COVID-19 are discussed.</p><p><strong>Results: </strong>The results reveal that miRNA biomarkers of these diseases are located in various chromosomes. The dispersion of miRNA locations across different chromosomes might explain the complication of the pathology of these diseases. Moreover, diabetes and COVID-19 have the largest number of miRNA biomarkers from Chromosome X.</p><p><strong>Conclusion: </strong>As Chromosome X is a sex chromosome, this phenomenon may explain the gender difference in the prevalence or severity of diabetes and COVID-19. The significant gender difference in the prevalence or severity of diabetes and COVID-19 might be due to the regulation function of their miRNA biomarkers from Chromosome X.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning-based Macrophage Signature for Predicting Prognosis and Immunotherapy Benefits in Cholangiocarcinoma.","authors":"Junkai Huang, Yu Chen, Zhiguo Tan, Yinghui Song, Kang Chen, Sulai Liu, Chuang Peng, Xu Chen","doi":"10.2174/0109298673342462241010072026","DOIUrl":"https://doi.org/10.2174/0109298673342462241010072026","url":null,"abstract":"<p><strong>Aims: </strong>We aimed to develop a macrophage signature for predicting clinical outcomes and immunotherapy benefits in cholangiocarcinoma.</p><p><strong>Background: </strong>Macrophages are potent immune effector cells that can change phenotype in different environments to exert anti-tumor and anti-tumor functions. The role of macrophages in the prognosis and therapy benefits of cholangiocarcinoma was not fully clarified.</p><p><strong>Objective: </strong>The objective of this study is to develop a prognostic model for cholangiocarcinoma.</p><p><strong>Methods: </strong>The macrophage-related signature (MRS) was developed using 10 machine learning methods with TCGA, GSE89748 and GSE107943 datasets. Several indicators (TIDE score, TMB score and MATH score) and two immunotherapy datasets (IMvigor210 and GSE91061) were used to investigate the performance of MRS in predicting the benefits of immunotherapy.</p><p><strong>Results: </strong>The Lasso + CoxBoost method's MRS was considered a robust and stable model that demonstrated good accuracy in predicting the clinical outcome of patients with cholangiocarcinoma; the AUC of the 2-, 3-, and 4-year ROC curves in the TCGA dataset were 0.965, 0.957, and 1.000. Moreover, MRS acted as an independent risk factor for the clinical outcome of cholangiocarcinoma cases. Cholangiocarcinoma cases with higher MRS scores are correlated with a higher TIDE score, higher tumor escape score, higher MATH score, and lower TMB score. Further analysis suggested high MRS score indicated a higher gene set score correlated with cancer-related hallmarks.</p><p><strong>Conclusion: </strong>With regard to cholangiocarcinoma, the current study created a machine learning-based MRS that served as an indication for forecasting the prognosis and therapeutic advantages of individual cases.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intermittent Fasting and Fasting-mimicking Diet: Promising Strategies in Cancer Management.","authors":"Chuanqiang Zhang, Fengqing Fu, Xingchao Zhu, Xiangyu Ni, Sijia Yue, Hongya Wu, Tongguo Shi","doi":"10.2174/0109298673332052241008060857","DOIUrl":"https://doi.org/10.2174/0109298673332052241008060857","url":null,"abstract":"<p><p>In the current review, we aim to elucidate the advancements concerning the roles and fundamental mechanisms of intermittent fasting (IF) and fasting-mimicking diet (FMD) in cancers. As a dietary intervention,IF and FMD potentially impede tumor growth by modulating multiple signaling pathways, such as AKT, Nrf2, and AMPK pathways.Moreover, IF and FMD have been reported to be associated with the tumor immune response by regulating various immune cells including tumor-associated macrophages (TAMs), monocytic myeloid-derived suppressor cells (MDSCs), T cells, and B cells.Additionally, IF and FMD can enhance the efficacy and tolerability of therapy, concurrently reducing therapy-induced side effects. Furthermore, several clinical trials have underscored the safety, feasibility, and positive impact on the quality of life associated with IF and FMD, thereby augmenting the effectiveness of conventional anti-- tumor therapies while ameliorating treatment-related side effects. This review provides a comprehensive synthesis of findings and elucidates the underlying mechanisms of IF and FMD in cancer progression and therapy.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen-Yue Qian, Si-Ning Hu, Liu Huadong, Jing-Jin Liu
{"title":"Potential Mechanisms of Covid-19 Related Nervous System Damage and Effects on Female Fertility.","authors":"Chen-Yue Qian, Si-Ning Hu, Liu Huadong, Jing-Jin Liu","doi":"10.2174/0109298673333968241011092801","DOIUrl":"https://doi.org/10.2174/0109298673333968241011092801","url":null,"abstract":"<p><p>Signs and symptoms that persist or worsen beyond the \"acute COVID-19\" stage are referred to as long-COVID. These patients are more likely to suffer from multiple organ failure, readmission, and mortality. According to a recent theory, long-lasting COVID-19 symptoms may be caused by abnormal autonomic nervous system (ANS) activity, such as hypovolemia, brain stem involvement, and autoimmune reactions. Furthermore, COVID-19 can also cause impaired fertility in women, which may also be related to inflammation and immune responses. Currently, few treatments are available for long-COVID symptoms. This article reviews the major effects of COVID-19 on the nervous system and female fertility, as well as offers potential treatment approaches.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nawaf Alshammari, Pratibha Pandey, Alya Redhwan, Hadeel R Bakhsh, Sorabh Lakhanpal, Safia Obaidur Rab, Ajay Singh, Mohd Saeed, Fahad Khan, Mohd Asif Shah
{"title":"Unraveling the Ferroptosis-inducing Potential of Methanol Leaves Extract of Prosopis Juliflora Via Downregulation of SLC7A11 and GPX4 mRNA Expression in A549 Lung Cancer Cells.","authors":"Nawaf Alshammari, Pratibha Pandey, Alya Redhwan, Hadeel R Bakhsh, Sorabh Lakhanpal, Safia Obaidur Rab, Ajay Singh, Mohd Saeed, Fahad Khan, Mohd Asif Shah","doi":"10.2174/0109298673343133241011072425","DOIUrl":"https://doi.org/10.2174/0109298673343133241011072425","url":null,"abstract":"<p><strong>Introduction: </strong>Prosopis juliflora has been employed in many traditional treatments. As evidenced by our earlier research, Prosopis juliflora leaf methanol extract (PJME) has a promising future in the fight against lung cancer. It may also be used in conjunction with other treatments to effectively manage lung cancer.</p><p><strong>Aims and objective: </strong>The main objective of this study was to explore the potential of PJME to inhibit lung cancer in A549 cells, along with its underlying mechanisms of action.</p><p><strong>Method: </strong>The antiproliferative effects were determined using MTT and LDH tests. Apoptosis- inducing capacity was evaluated using the DAPI staining, caspase-3 test, cytochrome C assay, PARP cleavage, and qRT-PCR. To investigate the mechanism of action of PJME in lung cancer, the levels of ROS, MMP, GSH, MDA, and specific ferroptosis indicators were measured.</p><p><strong>Results: </strong>The experimental data of the current study indicated that exposure of A549 cells to PJME reduced cell viability and increased cellular cytotoxicity. The apoptosis-inducing ability of PJME in A549 cells was validated by enhanced nuclear condensation, level of the caspase- 3, cytochrome C, and PARP release. In addition, qRT-PCR investigations verified that the administration of PJME led to a decrease in the expression of anti-apoptotic gene Bcl2 while enhancing the mRNA level of pro-apoptotic genes, such as Bax and caspase-3, in A549 cells.</p><p><strong>Conclusion: </strong>The study also found that PJME has the ability to activate ferroptosis pathways, as evidenced by elevated reactive oxygen species (ROS) generation, changes in the levels of antioxidant markers (MDA and GSH), and decreased expression of SLC7A11 and GPX4. The results of the present study clearly showed that PJME inhibited the proliferation of A549 cells and induced ferroptosis by reducing the expression of the important targets SLC7A11 and GPX4. Further research is necessary to fully understand the clinical efficacy of PJME before it can be investigated as supplemental or adjuvant therapy for lung cancer.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shayesteh Kokabi, Mobina Amiri, Niloofar Alahdad, Mohammad Ali Yazdanpanah, Ali Shahbazi, Mahmood Barati, Sara Simorgh, Fereshteh Azedi, Seyed Abdolhamid Angaji, Shima Tavakol
{"title":"Unveiling the Therapeutic Potential of Small Molecule of SVAK-12: A Comprehensive In Silico, In Vitro, and In Vivo Studies on its Neuroprotective Effects and Molecular Interactions in Parkinson's Disease.","authors":"Shayesteh Kokabi, Mobina Amiri, Niloofar Alahdad, Mohammad Ali Yazdanpanah, Ali Shahbazi, Mahmood Barati, Sara Simorgh, Fereshteh Azedi, Seyed Abdolhamid Angaji, Shima Tavakol","doi":"10.2174/0109298673329597241006053718","DOIUrl":"https://doi.org/10.2174/0109298673329597241006053718","url":null,"abstract":"<p><strong>Introduction: </strong>Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic cells and as of now, there is no established definitive treatment available for this condition.</p><p><strong>Method: </strong>In this study, the focus was on investigating the impact of SVAK-12, a small molecule that can cross the blood-brain barrier and remain stable without structural changes. The effect of SVAK-12 was investigated in vitro on neurotoxicity, in vivo model of Parkinson's Diseases and in silico.</p><p><strong>Result: </strong>Through in vitro and in vivo experiments, as well as molecular docking simulations, it was found that SVAK-12 (375 ng.ml) led to increased cell viability, reduced cellular damage, and decreased production of NO and ROS. Additionally, it boosted levels of important neurotrophic factors like BDNF (130.49%) and GDNF (116.38%), potentially aiding in alleviating motor disability and depression. The study also highlighted SVAK-12's potential as a therapeutic candidate for neurological disorders due to its ability to increase tyrosine hydroxylase expression and dopamine levels (4.84 times). While it did not significantly improve motor symptoms in vivo, it did enhance motor asymmetry in the forelimbs and gene expression related to brain regions. Besides, it induced significant BMP-2 gene expression in substantial nigra regions without significant changes in GDNF and Nurr1 gene expression in the striatum expression. The docking of SVAK-12, Levodopa, Amantadine, Biperiden, Selegiline, and Rasagiline to the binding site of GFRα1, sortilin, and TrkB showed that SVAK-12 had greater MolDock score than Selegiline and Amantadine for GFRα1 and greater than amantadine for Sortilin and TrKB.</p><p><strong>Conclusion: </strong>Overall, the study suggests that SVAK-12's neuro-biocompatibility, ability to reduce free radicals, and enhanced neurotrophic factors make it a promising candidate as a neuroprotective drug.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}