Azole Antifungals Under Pressure: Therapeutic Challenges and Multifaceted Resistance Mechanisms.

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Andre L S Santos, Lívia S Ramos, Thais P Mello, Livia Viganor, Noely M B M Nonato, Raizza E E Pinheiro, Marta H Branquinha
{"title":"Azole Antifungals Under Pressure: Therapeutic Challenges and Multifaceted Resistance Mechanisms.","authors":"Andre L S Santos, Lívia S Ramos, Thais P Mello, Livia Viganor, Noely M B M Nonato, Raizza E E Pinheiro, Marta H Branquinha","doi":"10.2174/0109298673413219250826055238","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal infections have increased markedly in both incidence and severity over recent decades, driven in part by the emergence of novel pathogenic species harboring sophisticated resistance mechanisms against commonly used antifungal agents. This alarming trend is especially pronounced with azoles, which remain widely used in clinical settings due to their broad-spectrum activity and favorable oral bioavailability. Azoles exert their antifungal effect by inhibiting lanosterol 14α-demethylase, a key enzyme in the ergosterol biosynthesis pathway, thereby compromising the integrity, fluidity, and functionality of the fungal cell membrane. However, the escalating prevalence of multidrug-resistant fungal strains, particularly those resistant to azoles, has significantly complicated therapeutic strategies and represents a growing threat to global public health. This perspective explores the diverse and increasingly complex mechanisms of azole resistance in clinically relevant fungi, particularly species of Candida and Aspergillus, highlighting the urgent need for enhanced surveillance, novel therapeutic approaches, and responsible antifungal stewardship.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673413219250826055238","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungal infections have increased markedly in both incidence and severity over recent decades, driven in part by the emergence of novel pathogenic species harboring sophisticated resistance mechanisms against commonly used antifungal agents. This alarming trend is especially pronounced with azoles, which remain widely used in clinical settings due to their broad-spectrum activity and favorable oral bioavailability. Azoles exert their antifungal effect by inhibiting lanosterol 14α-demethylase, a key enzyme in the ergosterol biosynthesis pathway, thereby compromising the integrity, fluidity, and functionality of the fungal cell membrane. However, the escalating prevalence of multidrug-resistant fungal strains, particularly those resistant to azoles, has significantly complicated therapeutic strategies and represents a growing threat to global public health. This perspective explores the diverse and increasingly complex mechanisms of azole resistance in clinically relevant fungi, particularly species of Candida and Aspergillus, highlighting the urgent need for enhanced surveillance, novel therapeutic approaches, and responsible antifungal stewardship.

压力下的唑类抗真菌药物:治疗挑战和多方面耐药机制。
近几十年来,真菌感染的发病率和严重程度都显著增加,部分原因是新型致病物种的出现,这些物种对常用抗真菌药物具有复杂的耐药机制。这种令人担忧的趋势在唑类药物中尤为明显,由于其广谱活性和良好的口服生物利用度,唑类药物在临床环境中仍被广泛使用。氮唑通过抑制麦角甾醇14α-去甲基酶(麦角甾醇生物合成途径中的关键酶)发挥抗真菌作用,从而影响真菌细胞膜的完整性、流动性和功能性。然而,耐多药真菌菌株,特别是对唑类药物耐药的真菌菌株的流行率不断上升,使治疗策略变得极为复杂,并对全球公共卫生构成日益严重的威胁。这一观点探讨了临床相关真菌(特别是念珠菌和曲霉菌)中多种多样且日益复杂的唑耐药机制,强调了加强监测、新治疗方法和负责任的抗真菌管理的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信