Tong Shi , Yu Xie , Xiyue Cao , Hao Zhang , Chenya Lu , Mengzhe Li , Xin Wang , Li Yuan , Ruichang Gao
{"title":"Mechanism of L-arginine improving the macroscopic and microscopic qualities of Acipenser schrenckii surimi gel under low-salt conditions and microwave irradiation: Significance of moisture migration and distribution","authors":"Tong Shi , Yu Xie , Xiyue Cao , Hao Zhang , Chenya Lu , Mengzhe Li , Xin Wang , Li Yuan , Ruichang Gao","doi":"10.1016/j.crfs.2025.101018","DOIUrl":"10.1016/j.crfs.2025.101018","url":null,"abstract":"<div><div>This study explored the mechanism by which L-arginine (L-Arg) enhanced the characteristics of low-salt sturgeon (<em>Acipenser schrenckii</em>) surimi gels under microwave (MW) irradiation, focusing on the changes in the distribution and migration of water molecules. The findings indicated that L-Arg shortened the gel formation time from MW 3 min to MW 2 min. Moreover, the addition of 2% L-Arg optimized the gel properties, achieving the highest water holding capacity (83.24%), resilience (48.34 cm), and cohesion (0.80) at MW 3 min (<em>P</em> < 0.05). Additionally, cryo-scanning electron microscopy showed that the fractal dimension and porosity of the gel network enhanced and decreased, respectively, with the increasing content of L-Arg. These improvements in macroscopic and microscopic qualities were related to the transformation of free water into immobilized water and the more uniform distribution of hydrogen protons under the MW irradiation promoted by L-Arg, as demonstrated by the magnetic resonance imaging and Pearson correlation analysis. This study provided novel insights into overcoming the challenges associated with MW processing in surimi products.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101018"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143576890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiao-Yun Hong , Yan Huang , Jie Yang , Long-Teng Su , Zhao-Ri Dai , Cheng-Fei Zhao
{"title":"Food sweeteners: Angels or clowns for human health?","authors":"Qiao-Yun Hong , Yan Huang , Jie Yang , Long-Teng Su , Zhao-Ri Dai , Cheng-Fei Zhao","doi":"10.1016/j.crfs.2025.101032","DOIUrl":"10.1016/j.crfs.2025.101032","url":null,"abstract":"<div><div>With the global prevalence of obesity and diabetes continuing to rise, metabolic diseases caused by excessive sugar intake have become a significant public health issue. In this context, various sweeteners as sugar substitutes have been widely used in the food industry. Sweeteners are highly favored for their good safety profile, cost-effectiveness, low-calorie properties, and potential blood sugar regulation effects, and their applications have extended to fields such as pharmaceuticals and daily chemicals. However, recent studies indicate that the impact mechanisms of sweeteners on human health are more complex than previously understood, and the long-term safety of their use has sparked widespread concern in both academia and the public. This review systematically examines relevant literature from the past three decades, employing evidence-based medicine methods for screening and meta-analysis, aiming to comprehensively assess the potential effects of sweeteners on human metabolic indicators (including blood glucose homeostasis and body fat composition) and cancer risk. The discussion will unfold in the following four sections: (1) Definition and classification of sweeteners; (2) Application areas of various sweeteners; (3) Beneficial effects of sweetener use on human health; (4) Adverse effects of sweetener use on health issues in different population groups. Current evidence suggests that the rational use of specific types of sweeteners within recommended dosage ranges can effectively improve blood glucose control, promote weight management, and play a positive role in maintaining oral health. However, excessive or long-term use of certain sweeteners may disrupt gut microbiota balance, affect glucose and lipid metabolism homeostasis, increase cardiovascular disease risk, and potentially be associated with the occurrence of certain malignant tumors. Notably, sweetener exposure during pregnancy may affect the fetus through mechanisms such as epigenetic modifications, necessitating special caution in sweetener selection for pregnant women. This review aims to provide clinicians, nutritionists, and food science professionals with the latest evidence-based medical evidence, guiding consumers to make informed sweetener choices by weighing health benefits against potential risks. It also offers scientific basis for formula optimization and product development in the food industry, thereby promoting public health.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101032"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Etty Syarmila Ibrahim Khushairay , Salma Mohamad Yusop , Mohamad Yusof Maskat , Abdul Salam Babji
{"title":"Defatted chia (Salvia hispanica L.) flour peptides: Exploring nutritional profiles, techno-functional and bio-functional properties, and future directions","authors":"Etty Syarmila Ibrahim Khushairay , Salma Mohamad Yusop , Mohamad Yusof Maskat , Abdul Salam Babji","doi":"10.1016/j.crfs.2025.101035","DOIUrl":"10.1016/j.crfs.2025.101035","url":null,"abstract":"<div><div>Chia (<em>Salvia hispanica</em> L.) is a summer-blooming herb from the mint family, known for its rich nutritional profile, including high-quality protein, fibre, and a balanced ratio of omega-3 and omega-6 fatty acids. With the rising demand for chia oil, defatted chia flour (DCF), a by-product of oil extraction, has gained attention as a valuable ingredient. DCF is rich in essential macronutrients and amino acids, offering a sustainable alternative to traditional protein sources and supporting global food sustainability and waste reduction efforts. Recent studies have highlighted the techno-functional properties of DCF peptides, showing excellent solubility, water- and oil-absorption capacities, as well as emulsifying, foaming, and gelling abilities. These properties enhance their application in diverse food systems, making DCF an important ingredient in the development of nutritious, innovative, and appealing food products. Beyond their functional roles, chia-derived peptides also exhibit significant bioactive properties, such as antioxidants, antihypertensive, anti-inflammatory, neuroprotective, antidiabetic, antimicrobial, anti-aging, hypolipidemic, and hypoglycaemic effects. These properties make them beneficial for improving health and wellness. Integrating DCF peptides into food products provides a natural approach to managing chronic diseases, promoting longevity, and improving overall health. To fully realize the potential of DCF peptides, future research should focus on understanding their bioactivities at the molecular level and exploring how they interact with various physiological systems. Interdisciplinary collaboration among food science, biotechnology, pharmacology, and nutrition is essential, along with careful evaluation of safety and potential risks. Regulatory frameworks will be crucial for the broader use of DCF peptides in food and nutraceuticals. Additionally, advancements in peptide production, extraction, and purification technologies will be necessary for large-scale, sustainable applications. Focusing on these areas will maximize the benefits of chia peptides for human health, nutrition, and environmental sustainability.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101035"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Barozzi , Stella Plazzotta , Ada Nucci , Lara Manzocco
{"title":"Elucidating the role of compositional and processing variables in tailoring the technological functionalities of plant protein ingredients","authors":"Lorenzo Barozzi , Stella Plazzotta , Ada Nucci , Lara Manzocco","doi":"10.1016/j.crfs.2025.100971","DOIUrl":"10.1016/j.crfs.2025.100971","url":null,"abstract":"<div><div>Although various plant protein (PP) ingredients are available on the market, their application in foods is not trivial, and food companies are struggling to identify PP ingredients fitting the intended use. To fill this gap, abundant literature has appeared but data are hardly comparable due to the absence of a recognized classification of PP ingredients accounting not only for protein purity but also for the process history, and of standardised protocols for technological functionality assessment. In this review, a comprehensive analysis of comparable literature data was thus carried out to elucidate the effect of composition and processing variables on PP technological functionalities. The review presents four sections describing: (i) the approach followed for the construction of a database of PP ingredient functionalities; (ii) the composition and processing factors relevant to PP ingredients; (iii) PP ingredient functional properties and methods used for their determination; (iv) the effect of composition and processing factors on PP ingredient functionalities. This analysis showed legume proteins to present the highest solubility and interfacial properties while pseudocereal ones the highest water-holding capacity. Although pure ingredients show higher functionalities, non-protein components could contribute to interfacial properties. Alkaline extraction, isoelectric precipitation and freeze-drying is the process mostly used in academic research to obtain PP ingredients. However, other extraction, purification, and drying methods can be properly combined, resulting in specific PP ingredient functionalities. Overall, this review highlights that, besides protein purity and source, knowledge of the processing history is required to select PP ingredients with desired functionalities.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100971"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2′-Fucosyllactose as a prebiotic modulates the probiotic responses of Bifidobacterium bifidum","authors":"Jingfang Du, Hong Yang","doi":"10.1016/j.crfs.2025.100975","DOIUrl":"10.1016/j.crfs.2025.100975","url":null,"abstract":"<div><div>2′-Fucosyllactose (2′-FL), one of the most representative oligosaccharides in human milk, is intimately linked to the enrichment of specific <em>Bifidobacterium</em> species. However, the efficacy of 2′-FL in modulating the probiotic responses of bifidobacterium has been rarely researched. Thereinto, three key issues have yet to be reported: the effects of 2′-FL hydrolysis on bifidobacterial growth, the protective effects of 2′-FL on bifidobacterium under gastrointestinal stress and the inhibitory activity of 2′-FL metabolites against <em>Cronobacter</em> spp. This work intended to address these concerns. 2′-FL dramatically accelerated the growth and proliferation of <em>Bifidobacterium bifidum</em> YH17 and <em>Bifidobacterium bifidum</em> BBI01. The glucose in lactose core on 2′-FL was preferable for <em>B. bifidum</em> to achieve substantial increases in biomass while the galactose was not readily available. Additionally, 2′-FL showed unique advantages in ameliorating the resistance of <em>B. bifidum</em> to gastrointestinal challenges. 2′-FL considerably improved the adhesive property of <em>B. bifidum</em>, thus facilitating the competitive elimination of <em>Cronobacter sakazakii</em> ATCC 29544 and <em>Cronobacter muytjensii</em> ATCC 51329 by B<em>. bifidum</em>. The growth inhibition of 2′-FL on the <em>Cronobacter</em> strains was mediated by promoting the secretion of antibacterial substances from <em>B. bifidum</em>. The inhibitory activity hinged on the <em>B. bifidum</em> strains. 2′-FL specifically induced <em>B. bifidum</em> BBI01 to produce some antibacterial substances that were proteinaceous, thermostable and relatively stable even at pH 8.0. These antibacterial substances played a key role in the inhibitory activity and had a synergistic effect with acidification. These observations provide a useful guideline for developing synbiotic supplements to intervene the infant gut microbiota.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100975"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Habtamu Kefale , Rong Zhou , Zishu Luo , Senouwa Segla Koffi Dossou , Muez Berhe , Lei Wang , Ahmed A. Abbas , Yanxin Zhang , Ting Zhou , Jun You , Linhai Wang
{"title":"Metabolomic and biochemical insights into bioactive compounds and antioxidant properties of black oilseed testa and peeled seeds","authors":"Habtamu Kefale , Rong Zhou , Zishu Luo , Senouwa Segla Koffi Dossou , Muez Berhe , Lei Wang , Ahmed A. Abbas , Yanxin Zhang , Ting Zhou , Jun You , Linhai Wang","doi":"10.1016/j.crfs.2024.100939","DOIUrl":"10.1016/j.crfs.2024.100939","url":null,"abstract":"<div><div>Black oilseed crops are rich in diverse phenolic compounds and have excellent antioxidant activities, as reported in traditional Chinese medicine. Testa (seed coat) and peeled seeds (cotyledon, embryo, and other structures) are the seed's crucial components, contributing to the variation in phytonutrient, phenol content, bioactive component, and protective and pharmacological effects. However, comprehensive and comparative information on total phenol, flavonoid, antioxidant, and metabolic profiles in black seed testa and peeled sesame, soybean, peanut, and rapeseed seeds is rare. Here, we investigated the metabolic profiles, phenolic contents, and antioxidant activities of four black oilseed crop testas and peeled seeds. This study revealed that testa has higher total phenol, flavonoid, and antioxidant activities than peeled seeds. A total of 1847 metabolites were identified across all samples and categorized into 17 major classes: flavonoids (20.02%), phenolic acids (15.15%), lipids (11.47%), amino acids and derivatives (9.36%), alkaloids (7.47%), organic acids (5.79%), terpenoids (5.68%), lignans (5.57%), saccharides (4.27%), and nucleotides and derivatives (4.17%) among the top ten. Primary class metabolites such as amino acids, saccharides, and vitamins were higher in the peeled seeds than in the testa, signifying the role of energy reservoirs and nutritive potential. However, flavonoids, phenolic acids, coumarins, chromones, lignans, terpenoids, tannins, organic acids, and lipids were abundant in the testa. Interestingly, the diversity and content of secondary metabolites were more abundant in the testa than in the peeled seeds of each crop, explaining their potential for phenol content, bioactivity, antioxidant activity, and pharmacological potential. The bioactivity of peeled seeds and testas may be associated with the phytochemical composition and content of flavonoids, phenolic acids, terpenoids, alkaloids, lipids, terpenoids, lignans, amino acids, and saccharides. Therefore, according to our results, peeled seeds offer higher nutritional value, and the testa has medicinal and protective properties. This study provides insights into the variations in phytochemical composition, phenolic content, and antioxidant activity of testa and peeled black sesame, soybean, peanut, and rapeseed seeds for further application of oilseeds in food products and to maximize nutritional benefits.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100939"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengyan Wei , Xianʹe Ren , Yongchun Huang , Ning Hua , Yuting Wu , Feng Yang
{"title":"Hydrodynamic cavitation induced fabrication of soy protein isolate–polyphenol complexes: Structural and functional properties","authors":"Fengyan Wei , Xianʹe Ren , Yongchun Huang , Ning Hua , Yuting Wu , Feng Yang","doi":"10.1016/j.crfs.2024.100969","DOIUrl":"10.1016/j.crfs.2024.100969","url":null,"abstract":"<div><div>The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)). The effect of HC on the interaction between polyphenols and SPI was investigated, and the structural and functional properties of the formed complexes were characterized. The results showed that HC treatment led to SPI structure stretching, which increased the binding level of polyphenols, especially that of TA (increased from 35.08 ± 0.73% to 66.42 ± 1.35%). The increase in ultraviolet–visible absorption intensity and quenching of fluorescence intensity confirmed that HC enhanced the interaction between polyphenols and protein. HC treatment reduced the contents of free sulfhydryl and amino groups in SPI–polyphenol complexes and altered their Fourier transform infrared spectroscopy, indicating that HC treatment promoted the formation of C–N and C–S bonds between SPI and polyphenols. Circular dichroism spectroscopy indicated that HC treatment altered the secondary structure of SPI–polyphenol complexes, inducing an increase in α-helix and random coil contents and a decrease in β-sheet content. Regarding functional properties, HC treatment improved the emulsification and antioxidant activity of SPI–polyphenol complexes. Therefore, HC is an effective technique for promoting the binding of polyphenols to protein.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100969"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxin Li , Yingting Luo , Xuening Song , Yuzhuo Wang , Simiao Liu , Fazheng Ren , Lingyan Kong , Hao Zhang
{"title":"Enhancing water solubility of phytosterols through Co-amorphization with food-grade coformers","authors":"Yuxin Li , Yingting Luo , Xuening Song , Yuzhuo Wang , Simiao Liu , Fazheng Ren , Lingyan Kong , Hao Zhang","doi":"10.1016/j.crfs.2025.100984","DOIUrl":"10.1016/j.crfs.2025.100984","url":null,"abstract":"<div><div>Phytosterols (PS) offer significant health benefits in human diet, but its poor solubility limits its effectiveness and application. This study explored enhancing PS solubility by testing thirteen food-grade coformers, three preparation methods and proportions screening to obtain the optimal formulation. Nicotinamide (Nic) was identified as the most effective coformer. A 20:1 (w/w) PS-Nic co-amorphous (CM) mixture, prepared via freeze-drying, achieved a solubility of 1536.4 μg/mL, significantly higher than pure PS. X-ray diffraction and differential scanning calorimetry confirmed the amorphous state of the mixture. Fourier-transform infrared, Raman, and <sup>1</sup>H NMR spectroscopies, along with molecular dynamics simulations, revealed strong intermolecular interactions between PS and Nic. The PS-Nic CM demonstrated up to 60% <em>in vitro</em> dissolution and release within 2 h and maintained stable after storage at 4 °C for 6 months and under accelerated conditions equivalent to 10 months at room temperature. In sum, the crystal structure of PS was altered, and formed a co-amorphous system by using Nic as the optimal ligand via lyophilization to increase solubility. These findings suggest that the PS-Nic CM system has potential applications in functional foods, offering a feasible strategy to enhance the bioavailability of PS.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100984"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun-min Ma , Fu-shun Zhang , Xin-huai Zhao , Yang Yang , Bing Wang , Yan Wang , Xiao-fei Liu , Xin Bian , Zi-Xuan Xu , Guang Zhang , Li-zhe Qu , Na Zhang
{"title":"Genistein improves depression-like behavior in rats by regulating intestinal flora and altering glutamate gene expression","authors":"Chun-min Ma , Fu-shun Zhang , Xin-huai Zhao , Yang Yang , Bing Wang , Yan Wang , Xiao-fei Liu , Xin Bian , Zi-Xuan Xu , Guang Zhang , Li-zhe Qu , Na Zhang","doi":"10.1016/j.crfs.2025.101020","DOIUrl":"10.1016/j.crfs.2025.101020","url":null,"abstract":"<div><div>Depression is a mental disorder, and genistein is known to have antidepressant effects, but its mechanism of action is still unclear. Here, the mechanism of genistein improving depression based on gut microbiota was explored using classic behavioral indicators of depression combined with genomic technology. The behavioral evaluation showed that rats gavaged with 20–40 mg/kg genistein showed an increase in body weight, glucose preference, absenteeism score, body temperature, and 5-hydroxytryptamine (5-HT) content, while a decrease in adrenocorticotropic hormone (ACTH) and corticosterone (CORT) content compared to the depression rat model group, but there was no significant difference compared to the positive control (fluoxetine). The results of high-throughput sequencing showed that genistein increased the relative abundance of Firmicutes and Actinobacteriota and decreased the relative abundance of Bacteroidota at the phylum level. At the genus level, the abundance of <em>Bifidobacterium</em>, a short-chain fatty acid producing bacterium, was increased. Furthermore, metagenome results revealed that the antidepressant effect of genistein can be achieved by promoting glutamate metabolism, increasing glutamic acid decarboxylase (GAD) expression levels, promoting γ-aminobutyric acid (GABA) synthesis, and indirectly increasing 5-HT levels.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101020"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}