A critical review of conventional and emerging technologies for the detection of contaminants, allergens and adulterants in plant-based milk alternatives.
Zahra Karimi, Katrina Campbell, Zoltan Kevei, Andrea Patriarca, Anastasios Koidis, Maria Anastasiadi
{"title":"A critical review of conventional and emerging technologies for the detection of contaminants, allergens and adulterants in plant-based milk alternatives.","authors":"Zahra Karimi, Katrina Campbell, Zoltan Kevei, Andrea Patriarca, Anastasios Koidis, Maria Anastasiadi","doi":"10.1016/j.crfs.2025.101067","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing popularity of plant-based milk alternatives (PBMAs) necessitates effective safety and authentication measures to ensure food product integrity and maintain consumer trust. This review aims to offer a comprehensive overview of potential contaminants, allergens, and adulterants in PBMAs, and the analytical methodologies employed for their detection and quantitation. It details the advantages and limitations of widely employed testing techniques, such as chromatography, spectroscopy, immunoassays and PCR. In addition, it explores recent advancements in portable detection methods based on novel technologies such as CRISPR and biosensor systems that offer new opportunities for rapid and precise analysis. Despite these technological innovations, important challenges remain, particularly in optimizing sample preparation protocols and improving DNA-based methods efficiency. The integration of multiple detection strategies and the development of rapid, cost-effective analytical tools are critical steps towards enhancing both industry compliance and consumer confidence. Furthermore, green analytical methods - such as solvent-free extraction, AI-driven spectroscopy, and sustainable sample preparation techniques - pave the way toward eco-friendly and more efficient PBMA safety testing.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"101067"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2025.101067","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing popularity of plant-based milk alternatives (PBMAs) necessitates effective safety and authentication measures to ensure food product integrity and maintain consumer trust. This review aims to offer a comprehensive overview of potential contaminants, allergens, and adulterants in PBMAs, and the analytical methodologies employed for their detection and quantitation. It details the advantages and limitations of widely employed testing techniques, such as chromatography, spectroscopy, immunoassays and PCR. In addition, it explores recent advancements in portable detection methods based on novel technologies such as CRISPR and biosensor systems that offer new opportunities for rapid and precise analysis. Despite these technological innovations, important challenges remain, particularly in optimizing sample preparation protocols and improving DNA-based methods efficiency. The integration of multiple detection strategies and the development of rapid, cost-effective analytical tools are critical steps towards enhancing both industry compliance and consumer confidence. Furthermore, green analytical methods - such as solvent-free extraction, AI-driven spectroscopy, and sustainable sample preparation techniques - pave the way toward eco-friendly and more efficient PBMA safety testing.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.