Current pharmaceutical biotechnology最新文献

筛选
英文 中文
Significant Interaction between Melatonin and Titanium Bone Implants: Available Evidence and Future Research Directions. 褪黑素与钛骨植入物之间的显著相互作用:现有证据与未来研究方向
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-25 DOI: 10.2174/0113892010300967240610111644
Azam Hosseinzadeh, Abolfazl Bagherifard, Mohammad Sheibani, Arman Karimi-Behnagh, Russel J Reiter, Saeed Mehrzadi
{"title":"Significant Interaction between Melatonin and Titanium Bone Implants: Available Evidence and Future Research Directions.","authors":"Azam Hosseinzadeh, Abolfazl Bagherifard, Mohammad Sheibani, Arman Karimi-Behnagh, Russel J Reiter, Saeed Mehrzadi","doi":"10.2174/0113892010300967240610111644","DOIUrl":"https://doi.org/10.2174/0113892010300967240610111644","url":null,"abstract":"<p><p>The trend in the incidence rate of bone fractures has been upward and as a result, the burden associated with orthopedic fractures has increased significantly. Titanium (Ti) implants are considered a preferred method of managing long bone fractures. However, no benefit comes without some downside, and using Ti implants is associated with several complications. In this respect, it was observed that in bones, Ti can disrupt the bone healing process by disturbing the balance of osteoclast and osteoblast activation and also increasing the production of inflammatory cytokines. Melatonin is a widely-acting molecule that possesses strong anti-oxidant features. This molecule reinforces mineral density and improves bone formation processes. In this review, we focused on the protective effect of melatonin in mitigating the Ti-related complications.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monoclonal Antibodies: Current Advancements and Future Potential for Atopic Dermatitis Therapy. 单克隆抗体:特应性皮炎治疗的当前进展和未来潜力。
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-25 DOI: 10.2174/0113892010311098240530104530
Pravin Kumar, Mahendra Singh Ashawat, Ajay Kumar, Anchal Guleria, Akshay Thakur
{"title":"Monoclonal Antibodies: Current Advancements and Future Potential for Atopic Dermatitis Therapy.","authors":"Pravin Kumar, Mahendra Singh Ashawat, Ajay Kumar, Anchal Guleria, Akshay Thakur","doi":"10.2174/0113892010311098240530104530","DOIUrl":"https://doi.org/10.2174/0113892010311098240530104530","url":null,"abstract":"<p><strong>Background: </strong>Atopic Dermatitis (AD) is an inflammatory skin condition with a severe itch. The topical therapy using corticosteroids is not sufficient for the effective therapy of moderate to severe cases of AD. The investigation and development of immunological targetspecific human monoclonal antibodies have changed the paradigm for the therapy of moderate to severe cases of AD.</p><p><strong>Objective: </strong>The establishment of target-specific, tolerable, and efficacious human monoclonal antibodies might lead to the better management of moderate to severe cases of AD.</p><p><strong>Methodology: </strong>The scientific literature available in databases, such as Pubmed and Clinicaltrial.gov, was searched and discussed for available clinical therapeutic information.</p><p><strong>Discussion: </strong>The present review has discussed the potential immunological targets of specific monoclonal antibodies developed and approved or which are under investigation in clinical trials.</p><p><strong>Conclusion: </strong>The development of targeted monoclonal antibodies can improve the understanding of the role of different immunological pathways and biomarkers in AD and become the future of AD treatment.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Applications of Plant Antimicrobials in the Food Industry. 植物抗菌剂在食品工业中的新兴应用。
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-25 DOI: 10.2174/0113892010310982240613055746
Parul Grover, Monika Bhardwaj, Anjleena Malhotra, Ram Sharma, Anuj Pathak, Carlo Genovese, Sandeep Kumar, Suman Rohilla
{"title":"Emerging Applications of Plant Antimicrobials in the Food Industry.","authors":"Parul Grover, Monika Bhardwaj, Anjleena Malhotra, Ram Sharma, Anuj Pathak, Carlo Genovese, Sandeep Kumar, Suman Rohilla","doi":"10.2174/0113892010310982240613055746","DOIUrl":"https://doi.org/10.2174/0113892010310982240613055746","url":null,"abstract":"<p><p>Food safety is a global concern with significant public health implications. Improper food handling can harbor a wide range of pathogenic organisms. Antimicrobial agents are crucial for controlling microbes and ensuring food safety and human health. The growing demand for natural, safe, and sustainable food preservation methods has driven research into using plant antimicrobials as alternatives to synthetic preservatives. The food industry is now exploring innovative approaches that combine various physical methods with multiple natural antimicrobials. This review aims to outline the evolving applications of plant antimicrobials in the food industry. It discusses strategies for managing bacteria and categorizes different plant antimicrobials, providing insights into their mechanisms of action and structures. This review offers a comprehensive overview of antimicrobial peptides (AMPs), detailing their structural characteristics, mechanisms of action, various types, and applications in food packaging fabrication and explaining how they contribute to food preservation. It highlights the synergistic and additive benefits of plant antimicrobials and their successful integration with food technologies like nanotechnology, which enhances the hurdle effect, improving food safety and extending shelf life. The review also emphasizes the importance of antimicrobial peptides and the need for further research in this area. Safety assessment and regulatory considerations are discussed as well. By addressing these gaps, plant antimicrobials have the potential to pave the way for more effective, safe, and sustainable food preservation strategies in the future.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Participation of Lens Proteins and miRs in Traumatic and Inheritance Cataract: A Review on Diagnostic and Therapeutic Approaches for Cataract Management. 晶状体蛋白和 miRs 在外伤性和遗传性白内障中的参与:白内障诊断和治疗方法综述。
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-25 DOI: 10.2174/0113892010303094240613105517
Siva Prasad Panda, Navneet Pachauri, Adarsh Kesharwani, Dsnbk Prasanth, Vikrant Singh
{"title":"Participation of Lens Proteins and miRs in Traumatic and Inheritance Cataract: A Review on Diagnostic and Therapeutic Approaches for Cataract Management.","authors":"Siva Prasad Panda, Navneet Pachauri, Adarsh Kesharwani, Dsnbk Prasanth, Vikrant Singh","doi":"10.2174/0113892010303094240613105517","DOIUrl":"https://doi.org/10.2174/0113892010303094240613105517","url":null,"abstract":"<p><p>Traumatic and inherited cataract spiking blindness is caused by accumulated deposition of mutant eye lens protein or lens microarchitecture alteration. A traumatic cataract is a clouding of the eye's natural lens that occurs as a result of physical trauma to the eye. This trauma can be caused by various incidents such as blunt force injury, penetration by a foreign object, or a significant impact on the eye area. Inheritance cataracts or hereditary cataracts are cataracts that are genetically inherited from one or both parents. Complications following cataract surgery encompass various adverse outcomes such as inflammation, infection, bleeding, swelling, drooping eyelid, glaucoma, secondary cataracts, and complete loss of vision. The main purpose of the review is to highlight common pathophysiology associated with traumatic and inherited cataracts. Also, the review discusses diagnosis and treatment strategies for such cataract types by targeting their key pathological hallmarks. γD-crystallin plays a crucial role in maintaining the optical properties of the lens during the life span of an individual. Carbamazepine, Resveratrol, and Myricetin (CRM) are effectively bound at the γD-crystallin binding site and thereby could minimize misfolding and aggregation of γD-crystallin. miR-202, miR-193b, miR-135a, miR365, and miR-376a had the highest levels of abundance in the aqueous humor of individuals diagnosed with cataracts. The validation of these miRs will provide more insights into their functional roles and may be used for diagnostic purposes. The effective CRM combination as a multidrug formulation may postpone both traumatic and inherited cataracts and protect the eye from blindness.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Optimized Solid Lipid Nanoparticles of Montelukast Sodium and Assessment of Oral Bioavailability in Experimental Model. 设计优化的孟鲁司特钠固体脂质纳米颗粒并在实验模型中评估其口服生物利用度
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-24 DOI: 10.2174/0113892010300965240612054349
Pankaj Dangre, Paresh Wankhede, Kailas Moravkar, Mohan Kalaskar, Atish Mundadad, Shailesh Chalikwar
{"title":"Design of Optimized Solid Lipid Nanoparticles of Montelukast Sodium and Assessment of Oral Bioavailability in Experimental Model.","authors":"Pankaj Dangre, Paresh Wankhede, Kailas Moravkar, Mohan Kalaskar, Atish Mundadad, Shailesh Chalikwar","doi":"10.2174/0113892010300965240612054349","DOIUrl":"https://doi.org/10.2174/0113892010300965240612054349","url":null,"abstract":"<p><strong>Introduction: </strong>The objective of the reported work was to develop Montelukast sodium (MS) solid lipid nanoparticles (MS-SLNs) to ameliorate its oral bio-absorption. Herein, the highpressure homogenization (HPH) principle was utilized for the fabrication of MS-SLNs.</p><p><strong>Method: </strong>The study encompasses a 23 full factorial statistical design approach where mean particle size (Y1) and percent entrapment efficiency (Y2) were screened as dependent variables while, the concentration of lipid (X1), surfactant (X2), and co-surfactant (X3) were screened as independent variables. The investigation of MS-SLNs by DSC and XRD studies unveiled the molecular dispersion of MS into the SLNs while TEM study showed the smooth surface of developed MSSLNs. The optimized MS-SLNs exhibited mean particle size (MPS) = 115.5 ± 1.27 nm, polydispersity index (PDI) = 0.256 ± 0.04, zeta potential (ζ) = -21.9 ± 0.32 mV and entrapment efficiency (EE) = 90.97 ± 1.12 %. The In vivo pharmacokinetic study performed in Albino Wistar rats revealed 2.87-fold increments in oral bioavailability.</p><p><strong>Results: </strong>The accelerated stability studies of optimized formulation showed good physical and chemical stability. The shelf life estimated for the developed MS-SLN was found to be 22.38 months.</p><p><strong>Conclusion: </strong>At the outset, the developed MS-SLNs formulation showed a significant increment in oral bioavailability and also exhibited excellent stability in exaggerated storage conditions.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats. 含油辣木叶提取物的 Niosomes 纳米粒子对大鼠多柔比星毒性的心脏保护潜力
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-24 DOI: 10.2174/0113892010303097240605105013
Ebtesam A Mohamad, Samya Mahmoud Ahmed, Marwa A Masoud, Fatma Adel Mohamed, Haitham S Mohammed
{"title":"Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats.","authors":"Ebtesam A Mohamad, Samya Mahmoud Ahmed, Marwa A Masoud, Fatma Adel Mohamed, Haitham S Mohammed","doi":"10.2174/0113892010303097240605105013","DOIUrl":"https://doi.org/10.2174/0113892010303097240605105013","url":null,"abstract":"<p><strong>Introduction: </strong>Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases.</p><p><strong>Method: </strong>The current study is intended to explore the cardioprotective effect of ethanolic Moringa oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart.</p><p><strong>Results: </strong>It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status.</p><p><strong>Conclusion: </strong>Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Folate-Modified Curcumin-Loaded Nanoparticles for Overcoming Delivery Challenges in Cancer Treatment: A Narrative Review. 叶酸修饰的姜黄素载体纳米粒子用于克服癌症治疗中的递送难题:综述。
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-24 DOI: 10.2174/0113892010299290240531101441
Mohammad Nosrati-Oskouie, Marieh Salavatizadeh, Nazanin Sadat Aghili-Moghaddam, Thozhukat Sathyapalan, Prashant Kesharwani, Ali Tarighat-Esfanjani, Amirhossein Sahebkar
{"title":"Folate-Modified Curcumin-Loaded Nanoparticles for Overcoming Delivery Challenges in Cancer Treatment: A Narrative Review.","authors":"Mohammad Nosrati-Oskouie, Marieh Salavatizadeh, Nazanin Sadat Aghili-Moghaddam, Thozhukat Sathyapalan, Prashant Kesharwani, Ali Tarighat-Esfanjani, Amirhossein Sahebkar","doi":"10.2174/0113892010299290240531101441","DOIUrl":"https://doi.org/10.2174/0113892010299290240531101441","url":null,"abstract":"<p><p>Curcumin, as an anti-tumor agent, is not widely used in cancer treatment due to the lack of effective levels of its metabolites in cancerous tissue. Addressing the barriers to the carrier and delivery of drugs to the specific sites of therapeutic action while reducing side effects is a priority. Folate receptor expression is high in malignant and low in normal cells. Folate as a targeted ligand could selectively target cancer cells. Thus, this narrative review aimed to provide an overview of the studies that have investigated the different types of folate-modified curcumin as a carrier and deliverer and their structural properties that enhance therapeutic drug efficacy. A literature search was performed using PubMed, Scopus, Web of Science, and Google Scholar databases. Thirty-eight preclinical studies addressing this topic were identified. The findings of the current review have shown that folate-modified nanoparticles containing curcumin as a promising therapeutic approach can be effective in improving different types of cancers. In vitro studies have shown a higher cellular uptake and cytotoxicity effect, higher cell inhibition, and anti-proliferation with a lower dosage of curcumin. In vivo studies have shown more tumor suppression and smaller tumor volume without toxicity after the administration of folate-modified nanoparticles containing curcumin. Future clinical trials are needed to confirm the beneficial effect of folate-modified curcumin as a new drug delivery platform for cancer treatment.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Marine Alkaloids: A Natural Approach to Cancer Treatment. 探索海洋生物碱:治疗癌症的自然方法。
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-24 DOI: 10.2174/0113892010316791240611093022
Sonia Singh, Surendra Kumar, Amit Kumar Singh, Mayuri Varshney, Suchismita Roy
{"title":"Exploring Marine Alkaloids: A Natural Approach to Cancer Treatment.","authors":"Sonia Singh, Surendra Kumar, Amit Kumar Singh, Mayuri Varshney, Suchismita Roy","doi":"10.2174/0113892010316791240611093022","DOIUrl":"https://doi.org/10.2174/0113892010316791240611093022","url":null,"abstract":"<p><p>Cancer is one of the most complicated and prevalent diseases in the world, and its incidence is growing worldwide. Natural products containing pharmacological activity are widely used in the pharmaceutical industry, especially in anticancer drugs, due to their diverse structures and distinctive functional groups that inspire new drug results by means of synthetic chemistry. Terrestrial medicinal plants have traditionally been the primary source for developing natural products (NPs). However, over the past thirty years, marine organisms such as invertebrates, plants, algae, and bacteria have revealed many new pharmaceutical compounds known as marine NPs. This field constantly evolves as a discipline in molecular targeted drug discovery, incorporating advanced screening tools that have revolutionised and become integral to modern antitumor research. This review discusses recent studies on new natural anticancer alkaloids obtained from marine organisms. The paper illustrates the structure and origin of marine alkaloids and demonstrates the cytotoxic action of new alkaloids from several structural families and their synthetic analogs. The most recent findings about the potential or development of some of them as novel medications, together with the status of our understanding of their current mechanisms of action, are also compiled.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Cuproptosis Key Factor FDX1 in Gastric Cancer. 杯突关键因子 FDX1 在胃癌中的作用
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-24 DOI: 10.2174/0113892010301997240527162423
Qiqi Zhao, Miao Yu, Xueqin Du, Yuan Li, Juantao Lv, Xianglai Jiang, Xiaomei Chen, Anqi Wang, Xiaojun Yang
{"title":"The Role of Cuproptosis Key Factor FDX1 in Gastric Cancer.","authors":"Qiqi Zhao, Miao Yu, Xueqin Du, Yuan Li, Juantao Lv, Xianglai Jiang, Xiaomei Chen, Anqi Wang, Xiaojun Yang","doi":"10.2174/0113892010301997240527162423","DOIUrl":"https://doi.org/10.2174/0113892010301997240527162423","url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer is a common malignant tumor of the digestive tract, both domestically and internationally. It has high incidence and mortality rates, posing a significant threat to human health. The levels of blood copper are elevated in patients with gastric cancer. However, the exact relationship between copper overload and the malignant phenotype of gastric cancer is still unclear. This study aims to investigate the role of the Cuproptosis-related factor FDX1 in the conversion of gastric cancer to a malignant phenotype.</p><p><strong>Methods: </strong>Firstly, the relative mRNA and protein expression levels of FDX1 in gastric cancer were detected. Secondly, lentiviral transfection of gastric cancer cell lines was performed, and the effects of FDX1 functional intervention on the proliferation, invasion and migration of gastric cancer cells were assessed by CCK-8, colony formation, EdU proliferation, cell scratch and Transwell assays. Thirdly, the differential alteration of genes after overexpression of FDX1 was also analyzed by transcriptome sequencing. Finally, we assessed the tumour-forming capacity in vivo by the xenograft model.</p><p><strong>Results: </strong>FDX1 is significantly upregulated in gastric cancer. The inhibition of FDX1 function results in the suppression of malignant phenotypic transformation in gastric cancer cells. Conversely, overexpression of FDX1 function leads to alterations in tumor-related signaling pathways and the tumor microenvironment.</p><p><strong>Conclusion: </strong>FDX1 plays a significant role in the malignant phenotypic transformation of gastric cancer cells. Further investigation into the regulatory mechanism of FDX1 in the malignant transformation of gastric cancer will enhance our understanding of the involvement of Cuproptosis in gastric cancer.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Bioprinting Technologies for Diabetic Wound Regeneration. 利用生物打印技术促进糖尿病伤口再生。
IF 2.2 4区 医学
Current pharmaceutical biotechnology Pub Date : 2024-06-20 DOI: 10.2174/0113892010306310240605050448
Sanchit Dhankhar, Nitika Garg, Samrat Chauhan, Monika Saini, Thakur Gurjeet Singh
{"title":"Harnessing Bioprinting Technologies for Diabetic Wound Regeneration.","authors":"Sanchit Dhankhar, Nitika Garg, Samrat Chauhan, Monika Saini, Thakur Gurjeet Singh","doi":"10.2174/0113892010306310240605050448","DOIUrl":"https://doi.org/10.2174/0113892010306310240605050448","url":null,"abstract":"<p><p>A chronic metabolic condition, diabetes mellitus (DM), is becoming more common all over the globe. Diabetic complications include diabetic foot ulcers (DFUs). Between fifteen and twenty-five percent of people with diabetes will experience DFU at some point in their lives. Prolonged hospital stays and amputations are common outcomes of DFUs due to the absence of targeted therapy and appropriate wound dressings. Specialized DFU wound care is expected to be in high demand due to the anticipated increase in the prevalence of DM. Therefore, there is a strong need to enhance and create more effective wound dressings and therapies that are unique to DFU. Bioengineered tissues, individualised prostheses, and implants are just a few examples of how 3D bioprinting has revolutionised healthcare in the past decade. This review delves into the difficulties of wound management and explores how 3D bioprinting could improve existing treatment approaches and biomanufacturing composite 3D human skin substitutes as an alternative to skin grafting. To alleviate the healthcare burden caused by the rising incidence of DM, it will be crucial to co-develop 3D bioprinting technologies with new therapeutic techniques to address the unique pathophysiological problems of DFU in the future.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信