{"title":"Sirtuins in Osteosarcoma: Cracking the Code and Opening Up New Treatment Options.","authors":"Yushi Zhao, Yong Han, Baichuan Wang, Ting Wang","doi":"10.2174/0113892010374421250419163509","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma (OS) is a frequent primary malignant bone tumor that primarily affects adolescents and the elderly, and it is prone to metastasis and recurrence. The prognostic status of metastatic and recurrent OS has remained stagnant over the past decades despite the availability of an extensive range of chemotherapy drugs in the clinic. To increase the overall survival and quality of life of patients with osteosarcoma, new therapeutic approaches must be developed immediately. In recent years, sirtuins (SIRT1-7) have garnered a lot of attention as researchers investigate the mechanisms underlying OS development and look for efficient treatment approaches. The nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that make up the sirtuin family are engaged in several biologically controlled processes, including proliferation, invasion, metastasis, apoptosis, autophagy, and chemotherapy resistance. Despite their significance in cancer having been avidly studied for decades, their specific functions and mechanisms of action are not yet clear due to limited reports. This review will summarize the current research status and look forward to the directions and prospects of its application in osteosarcoma research, aiming to open up new avenues for the treatment and study of osteosarcoma.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010374421250419163509","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteosarcoma (OS) is a frequent primary malignant bone tumor that primarily affects adolescents and the elderly, and it is prone to metastasis and recurrence. The prognostic status of metastatic and recurrent OS has remained stagnant over the past decades despite the availability of an extensive range of chemotherapy drugs in the clinic. To increase the overall survival and quality of life of patients with osteosarcoma, new therapeutic approaches must be developed immediately. In recent years, sirtuins (SIRT1-7) have garnered a lot of attention as researchers investigate the mechanisms underlying OS development and look for efficient treatment approaches. The nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that make up the sirtuin family are engaged in several biologically controlled processes, including proliferation, invasion, metastasis, apoptosis, autophagy, and chemotherapy resistance. Despite their significance in cancer having been avidly studied for decades, their specific functions and mechanisms of action are not yet clear due to limited reports. This review will summarize the current research status and look forward to the directions and prospects of its application in osteosarcoma research, aiming to open up new avenues for the treatment and study of osteosarcoma.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.