二氢槲皮素的抗癌特性及机理研究。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cheng Zhang, Yuqiao Zeng, Bing Wu, Li Wang, Pengfei Wu, Ao Shen, Likun Wang
{"title":"二氢槲皮素的抗癌特性及机理研究。","authors":"Cheng Zhang, Yuqiao Zeng, Bing Wu, Li Wang, Pengfei Wu, Ao Shen, Likun Wang","doi":"10.2174/0113892010366947250415051408","DOIUrl":null,"url":null,"abstract":"<p><p>Dihydroquercetin (DHQ), also known as taxifolin, is a naturally occurring flavonoid compound that serves as an active pharmaceutical ingredient. It is commercially available in the form of dietary supplements. As the reduced form of quercetin, DHQ contains five phenolic hydroxyl groups. This compound is capable of chelating transition metal ions, thereby effectively scavenging free radicals and detoxifying harmful substances while modulating enzyme activities. Consequently, DHQ exhibits potent antioxidant, anti-inflammatory, antiviral, and antibacterial properties. Given its significant pharmacological potential, DHQ exhibits anti-tumor activity against various malignant tumors, including breast cancer, gastric cancer, hepatocellular carcinoma, colonic neoplasms, melanoma, and prostate cancer. DHQ inhibits tumor occurrence and progression by regulating multiple signaling pathways, such as wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB), and mitogen-activated protein kinase (MAPK). The anti-tumor mechanisms of DHQ include inhibition of cell proliferation, invasion, and migration; induction of cell cycle arrest, activation of autophagy, apoptosis, epigenetic modification, suppression of epithelial-mesenchymal transition (EMT), enhancement of chemotherapy efficacy, and augmentation of immune function. In particular, DHQ potentiates the efficacy of chemotherapy drugs and augments immune function. Based on a systematic review of the pharmacological properties and anti-tumor mechanisms of DHQ across multiple malignant tumors, we conclude DHQ to be a promising natural compound with significant potential for anti-tumor therapy.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Cancer Properties and Mechanistic Insights of Dihydroquercetin.\",\"authors\":\"Cheng Zhang, Yuqiao Zeng, Bing Wu, Li Wang, Pengfei Wu, Ao Shen, Likun Wang\",\"doi\":\"10.2174/0113892010366947250415051408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dihydroquercetin (DHQ), also known as taxifolin, is a naturally occurring flavonoid compound that serves as an active pharmaceutical ingredient. It is commercially available in the form of dietary supplements. As the reduced form of quercetin, DHQ contains five phenolic hydroxyl groups. This compound is capable of chelating transition metal ions, thereby effectively scavenging free radicals and detoxifying harmful substances while modulating enzyme activities. Consequently, DHQ exhibits potent antioxidant, anti-inflammatory, antiviral, and antibacterial properties. Given its significant pharmacological potential, DHQ exhibits anti-tumor activity against various malignant tumors, including breast cancer, gastric cancer, hepatocellular carcinoma, colonic neoplasms, melanoma, and prostate cancer. DHQ inhibits tumor occurrence and progression by regulating multiple signaling pathways, such as wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB), and mitogen-activated protein kinase (MAPK). The anti-tumor mechanisms of DHQ include inhibition of cell proliferation, invasion, and migration; induction of cell cycle arrest, activation of autophagy, apoptosis, epigenetic modification, suppression of epithelial-mesenchymal transition (EMT), enhancement of chemotherapy efficacy, and augmentation of immune function. In particular, DHQ potentiates the efficacy of chemotherapy drugs and augments immune function. Based on a systematic review of the pharmacological properties and anti-tumor mechanisms of DHQ across multiple malignant tumors, we conclude DHQ to be a promising natural compound with significant potential for anti-tumor therapy.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010366947250415051408\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010366947250415051408","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二氢槲皮素(DHQ),也被称为taxifolin,是一种天然存在的类黄酮化合物,作为一种活性药物成分。它以膳食补充剂的形式在商业上可以买到。作为槲皮素的还原形式,DHQ含有5个酚羟基。该化合物能够螯合过渡金属离子,从而在调节酶活性的同时有效清除自由基和解毒有害物质。因此,DHQ表现出有效的抗氧化、抗炎、抗病毒和抗菌特性。鉴于其显著的药理潜力,DHQ对多种恶性肿瘤表现出抗肿瘤活性,包括乳腺癌、胃癌、肝细胞癌、结肠肿瘤、黑色素瘤和前列腺癌。DHQ通过调节wnt/β-catenin、磷酸肌肽3-激酶(PI3K)/蛋白激酶B (Akt)、哺乳动物雷帕霉素靶蛋白(mTOR)、转化生长因子-β (TGF-β)、活化B细胞核因子κB轻链增强子(NF- κB)、丝裂原活化蛋白激酶(MAPK)等多种信号通路抑制肿瘤的发生和发展。DHQ的抗肿瘤机制包括抑制细胞增殖、侵袭和迁移;诱导细胞周期阻滞,激活自噬,细胞凋亡,表观遗传修饰,抑制上皮-间质转化(EMT),增强化疗疗效,增强免疫功能。特别是,DHQ可以增强化疗药物的疗效,增强免疫功能。基于对DHQ在多种恶性肿瘤中的药理作用和抗肿瘤机制的系统综述,我们认为DHQ是一种很有前景的天然化合物,具有很大的抗肿瘤治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-Cancer Properties and Mechanistic Insights of Dihydroquercetin.

Dihydroquercetin (DHQ), also known as taxifolin, is a naturally occurring flavonoid compound that serves as an active pharmaceutical ingredient. It is commercially available in the form of dietary supplements. As the reduced form of quercetin, DHQ contains five phenolic hydroxyl groups. This compound is capable of chelating transition metal ions, thereby effectively scavenging free radicals and detoxifying harmful substances while modulating enzyme activities. Consequently, DHQ exhibits potent antioxidant, anti-inflammatory, antiviral, and antibacterial properties. Given its significant pharmacological potential, DHQ exhibits anti-tumor activity against various malignant tumors, including breast cancer, gastric cancer, hepatocellular carcinoma, colonic neoplasms, melanoma, and prostate cancer. DHQ inhibits tumor occurrence and progression by regulating multiple signaling pathways, such as wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB), and mitogen-activated protein kinase (MAPK). The anti-tumor mechanisms of DHQ include inhibition of cell proliferation, invasion, and migration; induction of cell cycle arrest, activation of autophagy, apoptosis, epigenetic modification, suppression of epithelial-mesenchymal transition (EMT), enhancement of chemotherapy efficacy, and augmentation of immune function. In particular, DHQ potentiates the efficacy of chemotherapy drugs and augments immune function. Based on a systematic review of the pharmacological properties and anti-tumor mechanisms of DHQ across multiple malignant tumors, we conclude DHQ to be a promising natural compound with significant potential for anti-tumor therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信