{"title":"Advances and Challenges of Microneedle Assisted Drug Delivery for Biomedicals Applications: A Review.","authors":"Shiv Bahadur, Radhika, Kantrol Kumar Sahu, Arun Kumar Singh","doi":"10.2174/0113892010310769240924053724","DOIUrl":"https://doi.org/10.2174/0113892010310769240924053724","url":null,"abstract":"<p><p>Microneedles have been explored as a novel way of delivering active ingredients into the skin. They have various advantages, such as quick and efficient drug delivery, mechanical stability, minimal pain, variable capacity and easy use. Microneedles are enabled for the delivery of vaccine, peptides, medicinal components and in cosmetology, which couldn't go unnoticed. The novel approaches in the transdermal drug delivery system have increased the efficiency of drug delivery into the skin by crossing the skin barriers. This platform has a wide range of applications and can also be used to deliver non-transdermal biomedicals. The variety in the design of microneedles has demanded similar diversity in their methods of fabrication; micro molding and drawing lithography may be useful methods. There are different types of polymers and materials for the fabrication of microneedles. Several synthetic and natural materials are used in the fabrication of microneedles. Unique shapes, materials, and mechanical properties are modified for organ-specific applications in microneedle engineering. In this review, we discuss several factors and their roles to cross the biological barriers for transdermal drug delivery in various sites, such as in ocular, vascular, oral, and mucosal tissue. Additionally, this article highlights the future scope of transdermal drug delivery systems through microneedles.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biochemical Screening, In-vitro and In-silico Characterization of Citrullus colocynthis Fruit Extracts: A Combined Experimental and Computation Study.","authors":"Syeda Aaliya Shehzadi, Muhammad Ayaz Ashraf, Nusrat Shafiq, Fatima Rida, Aneela Javed, Farhan Younas, Waqar Un-Nisa, Waleed Younus","doi":"10.2174/0113892010332012241027022502","DOIUrl":"https://doi.org/10.2174/0113892010332012241027022502","url":null,"abstract":"<p><strong>Background: </strong>Several medicinal plants are identified as therapeutic agents for the world's most deadly disease cancer. A member of the \"Cucurbitaceae\" family of medicinal plants, Citrullus colocynthis (C. colocynthis) has various pharmacological actions.</p><p><strong>Aims and objectives: </strong>In the present study we have focused on the phytochemical analysis, antimicrobial, anticancer and in silico investigation of fruit extracts of C. colocynthis. The chloroform, pure ethanolic and aq. ethanolic extracts of C. colocynthis whole fruit, peel and pulp separately have been investigated.</p><p><strong>Methods: </strong>The phytochemical analysis revealed the presence of alkaloids, flavonoids, steroids, phenols, saponins and glycosides in various parts of the fruit. Some compounds have been identified using GC-MS analysis by comparing with NIST library data. The antimicrobial activity of all extracts was checked by agar well diffusion method against five different bacterial strains such as A. baumannii, K. pneumonia, S. aureus, P. aeruginosa and E. coli. The zone of inhibition (ZOI) ranged between 11 mm to 27 mm against different strains.</p><p><strong>Results: </strong>The polar solvent extracts (ethanolic and aq. ethanolic extract) of peel showed good sensitivity against all bacterial strains as compared to non-polar solvent (chloroform extract), which showed activity only against Staphylococcus aureus and Pseudomonas aeruginosa. The cytotoxic activity of C. colocynthis all extracts against human brain cancer cell lines (U-87) was assessed using MTT assay.</p><p><strong>Conclusion: </strong>The % cell viability of ethanolic (ET-PL), and aq. ethanolic extract of whole fruit and pulp showed promising results. The cancerous cell line U-87 seems to be more sensitive towards polar solvents (ethanolic and aq. ethanolic) pulp extracts than peel. Further, based on invitro results, compounds identified in ET-PP were screened for their potential as antibacterial and anticancer agents through molecular docking and MMGBSA studies. These studies strongly supported the in-vitro study results and identified new drug candidates.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishing a Novel Pyroptosis-Related Gene Signature and Predicting Chemical Drugs for Papillary Thyroid Cancer.","authors":"Ru Wang, Xin Chen, Dandan Yi, Chaoyu Jiang, Fazhan Xu, Jiabo Qin, YiHsuan Lee, Jianfeng Sang, Xianbiao Shi","doi":"10.2174/0113892010325685241029113633","DOIUrl":"https://doi.org/10.2174/0113892010325685241029113633","url":null,"abstract":"<p><strong>Background: </strong>The present study aimed to construct a novel pyroptosis-related gene signature to predict the prognosis of papillary thyroid cancer (PTC).</p><p><strong>Methods: </strong>The gene expression level and survival and prognosis information of PTC were obtained from TCGA. The differentially expressed pyroptosis-related genes (DEPs) between cancer and control groups were selected, followed by subtype analysis. A prognostic model was built using LASSO regression analysis. The samples were then divided into high- and low-risk groups, and the differences in immune cell distribution in different risk groups were compared. The chemical drugs associated with genes in the prognostic model were extracted from the Comparative Toxicogenomics Database.</p><p><strong>Results: </strong>A total of 31 DEPs were selected, and 3 different subtypes were obtained. A prognostic model based on 6 pyroptosis-related genes was constructed. The risk grouping was significantly correlated with the actual prognosis, and the model was found to be an independent prognostic factor. Six immune cells with significant differences in distribution in different risk groups were screened. CGP52608 could target four genes in the prognostic model, including GSDMB, NLRC4, IL1A, and IL6.</p><p><strong>Conclusion: </strong>The present study constructed a pyroptosis-related gene signature that could predict the prognosis of PTC. Additionally, this signature was correlated with tumor immunity.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Nanomedicine as a Smart Weapon on Multidrug Resistance in Cancer Therapy.","authors":"Safal Kumar Paikray, Liza Sahoo, Nigam Sekhar Tripathy, Fahima Dilnawaz","doi":"10.2174/0113892010336491241022094511","DOIUrl":"https://doi.org/10.2174/0113892010336491241022094511","url":null,"abstract":"<p><p>Cancer is the leading cause of death worldwide. The effectiveness of chemotherapy in cancer patients is still significantly hampered by Multidrug Resistance (MDR). Tumors exploit the MDR pathways to invade the host and limit the efficacy of chemotherapeutic drugs that are delivered as single drugs or combinations. Further, overexpression of ATP-binding Cassette transporter (ABC transporter) proteins augments the efflux of chemotherapeutic drugs and lowers their intracellular accumulation. Recent progress in the development of nanotechnology and nanocarrier-based drug delivery systems has shown a better perspective with respect to the improvement of cancer chemotherapy. Nanoparticles/nanomaterials are designed to target the immune system and tumor microenvironment of cancer cells for a variety of cancer treatments in order to improve bioavailability and reduce toxicity. This review elucidates the successful use of nanomaterials for cancer therapy and addressing the MDR and throws some light on the present obstacles impeding their translation to clinical use.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cetuximab scFv-Modified 5-FU Loaded Chitosan Nanoparticles: \"A Novel Therapeutic Platform.\"","authors":"Masumeh Jalalvand, Fariba Esmaeili, Khadijeh Falahzadeh, Mohammadali Mazloumi, Gholamreza Shahsavari, Elham Bayat, Farshid Zandsalimi, Yeganeh Talebkhan, Leila Nematollahi, Babak Negahdari","doi":"10.2174/0113892010340791241025033549","DOIUrl":"https://doi.org/10.2174/0113892010340791241025033549","url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer [CRC] is among the most fatal types of cancer. An active targeting delivery system that specifically interacts with CRC cells could improve the therapy's outcomes. Herein, Cetuximab single-chain fragment variable antibody [scFv] fragments were conjugated to the surface of 5-FU encapsulated chitosan nanoparticles [CS NPs] to develop an effective therapeutic platform [scFv-CS/5-FU NPs].</p><p><strong>Method: </strong>CS/5-FU NPs were synthesized using a special fluidic system. Encapsulation efficiency [EE], loading capacity [LC], and the drug release profile of the particles were determined. scFv fragments were produced recombinantly and tailored on the surface of CS/5-FU NPs. The physicochemical features of scFv-CS/5-FU NPs were also characterized. MTT and flow cytometry assay investigated the toxicity effect of scFv-CS/5-FU NPs on the HCT116 cell line.</p><p><strong>Results: </strong>CS/5-FU NPs had a homogenous spherical shape. They possessed sustainable drugrelease behavior. The produced scFv-CS/5-FU NPs were also spherical. scFv-CS/5-FU NPs significantly decreased the viability of cancerous cells in a dose-dependent manner and induced apoptosis in 97.97% of targeted cells.</p><p><strong>Conclusion: </strong>scFv-CS/5-FU NPs showed remarkable anti-CRC activity. This novel targeting delivery system reduced the effective dose of 5-FU which is of vital importance to decrease the devastating side effects of chemotherapy.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Considerations and Challenges to Develop Drug-drug Coamorphous System: A Recent Update.","authors":"Madhura Tiwari, Kavita Singh, Bappaditya Chatterjee","doi":"10.2174/0113892010318350241024113827","DOIUrl":"https://doi.org/10.2174/0113892010318350241024113827","url":null,"abstract":"<p><p>Poor water solubility of several drugs, especially BCS class II and IV drugs, restricts their dissolution and negatively affects oral absorption. Amorphization of drugs is a year-old approach to enhance solubility and dissolution of poorly water-soluble drugs. Polymeric amorphous systems have been proven effective but have disadvantages, such as low drug loading, high carrier content, etc. In a coamorphous system, a small molecule can be used as a coformer that keeps the amorphous form of a drug stable. In a drug-drug coamorphous system (CAS), one therapeutically active moiety can act as a coformer for the other drug. Although effective, the rationale of selecting the drugs and optimising the ratio without compromising therapeutic effect and safety is challenging. The preparation method is also a challenge because the stress during the processing method may result in the loss of crystallinity. Hence, the processing stability of the amorphous drug is a significant concern. A stable CAS is formed when two drugs generate some molecular-level interaction. In silico prediction of miscibility, molecular dynamic simulation, functional group analysis by Fourier Transform infrared spectroscopy, Raman spectroscopy, NMR, etc. contribute to the analysis of molecular-level interaction. Additionally, the article discusses the preparation method and the fact that the excipient must be selected carefully to form an effective CAS.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Wei Cheng Lim, Jia Yee Lee, Ching Hsein Chen, Kenny Gah Leong Voon, Rhun Yian Koh, Soi Moi Chye
{"title":"Virus-like Particles-Based Vaccine to Combat Neurodegenerative Diseases.","authors":"Luis Wei Cheng Lim, Jia Yee Lee, Ching Hsein Chen, Kenny Gah Leong Voon, Rhun Yian Koh, Soi Moi Chye","doi":"10.2174/0113892010331763241002122854","DOIUrl":"https://doi.org/10.2174/0113892010331763241002122854","url":null,"abstract":"<p><p>Neurodegenerative diseases are regarded as gradual, incurable conditions with an insidious onset. Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most prevalent neurodegenerative diseases reported globally. Developing effective treatment strategies for neurodegenerative diseases has remained a primary objective and a huge challenge for researchers. The therapeutic medications that are now approved for the treatment of neurodegenerative diseases merely treat the symptoms; the underlying pathology is not addressed. Therefore, the emergence of novel disease-modifying therapeutic modalities such as immunotherapy has opened a new path in developing effective treatments for neurogenerative diseases. Compared to other types of subunit active vaccines, virus-like particles (VLPs) are considerably more immunogenic as they present dense and repetitive viral antigen epitopes on their surface, which can trigger both humoral and cell-mediated immune responses. They are also a much safer option than the traditional inactivated and live-attenuated vaccines since they are devoid of viral genomes and are, therefore, non-pathogenic and non-infectious. Researchers have turned their attention to VLPs as an active immunotherapy candidate for AD due to the lessons learned from the AN1792 trial. Studies have shown that they effectively induce anti-Aβ, anti-tau, and anti-α-Synuclein antibodies while avoiding T-cell-related immune reactions in animal models of AD and PD. This review compiles the findings of preclinical animal model studies and clinical investigations on VLP-based vaccines for neurogenerative diseases thus far. The technical limitations and potential difficulties associated with the future application of VLP-based vaccines in patients with neurodegenerative diseases have also been covered.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sevda Allahmadadi, Aziz Homayouni-Rad, Mahnaz Tabibiazar, Pouria Gharehbeglou, Vahideh Sarabi-Aghdam, Saba Kamalledin Moghadam, Hamed Hamishehkar, Sanaz Kazemi
{"title":"Tryptophan Stability and Palatability in the Food Formulation: A Review.","authors":"Sevda Allahmadadi, Aziz Homayouni-Rad, Mahnaz Tabibiazar, Pouria Gharehbeglou, Vahideh Sarabi-Aghdam, Saba Kamalledin Moghadam, Hamed Hamishehkar, Sanaz Kazemi","doi":"10.2174/0113892010333886241015050836","DOIUrl":"https://doi.org/10.2174/0113892010333886241015050836","url":null,"abstract":"<p><p>Tryptophan, an essential amino acid, plays a crucial role in various physiological functions and is becoming more popular for use in food products This review delves into the methods, benefits, and challenges associated with enriching food products with tryptophan. We explore innovative strategies to enhance the stability, reduce bitterness, and improve the palatability of tryptophan supplementation in food formulations. Among these strategies, the utilization of nano-emulsion systems emerge as a promising approach to encapsulate tryptophan, safeguarding it from environmental factors and enhancing its bioavailability. Additionally, we discuss the incorporation of antioxidants and the use of functional derivatives as alternative methods to mitigate degradation and enhance consumer acceptability. thorough examination of these strategies, this review aims to provide insights into maximizing the potential of tryptophan enrichment in food products while overcoming the associated challenges.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Antonio Estefes-Duarte, Astrid Espinosa-Sánchez, Nury Pérez-Hernández, Mario I Ortiz, Eduardo Fernández-Martínez
{"title":"Mechanisms of Bioactive Lipids to Modulate Master Regulators of Lipid Homeostasis and Inflammation in Metabolic Syndrome.","authors":"José Antonio Estefes-Duarte, Astrid Espinosa-Sánchez, Nury Pérez-Hernández, Mario I Ortiz, Eduardo Fernández-Martínez","doi":"10.2174/0113892010340506241014112341","DOIUrl":"https://doi.org/10.2174/0113892010340506241014112341","url":null,"abstract":"<p><p>Metabolic Syndrome (MetS) refers to the co-occurrence of a constellation of metabolic diseases in the same individual, such as abdominal/visceral obesity, insulin resistance or diabetes, alterations in the lipid profile (dyslipidemias), and/or hypertension, which promotes the development of other cardiometabolic and hepatic diseases. Dyslipidemia and metabolic dysfunction- associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), are common MetS pathologies closely related to lipid metabolism. Alterations in the metabolism of proteins, carbohydrates, and lipids, caused by an excessive intake of nutrients and abnormal accumulation of body fat, which promotes chronic low-grade inflammation, are pivotal aspects of MetS development. To avoid damage caused by lipid overaccumulation, the transcription factors responsible for regulating lipid homeostasis and inflammation (named in this work master regulators) must modify their regular activity; however, the high adiposity established for long periods causes the appearance of insulin resistance (the MetS triggering factor most widely accepted in the literature). Fortunately, scientific evidence suggests that the abnormal activity of these regulators can be conveniently modulated by distinct species of bioactive lipids, among which unsaturated fatty acids stand out, offering new alternatives for treating MetS. Therefore, this work aims to provide a general overview of scientific evidence that supports the mechanisms of action and the effective modulation by bioactive lipids of some master lipid-metabolism-and-inflammation regulators in diverse aspects of MetS.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SIRT3, a New Hope in Liver Diseases from Pathogenic Mechanisms to Therapeutic Strategies.","authors":"Sai-Ya Tan, Xiao-Xuan Chen, Rui Zhang, Pan Liu, Jian-Peng Wang, Ting Wang, Zhang-E Xiong","doi":"10.2174/0113892010340592241011052133","DOIUrl":"https://doi.org/10.2174/0113892010340592241011052133","url":null,"abstract":"<p><p>The liver, the largest internal organ in the human body, regulates multiple reactions and processes, including detoxification, regeneration, and immune defense. Liver diseases have emerged as a significant global public health issue. Numerous studies have indicated that the mitochondrial deacetylase SIRT3 has played various roles in the pathogenesis and pathological progression of liver diseases. Objectives: This review aims to explore the advances in the study of SIRT3 and liver disease and review possible mechanisms. Natural and chemical activators of SIRT3 are also discussed. The role of SIRT3 in the pathogenic mechanisms and therapeutic strategies of liver disease is summarized by reviewing Pubmed. SIRT3 alleviates liver diseases by regulating fatty acid metabolism, mitochondrial function, and immune-inflammatory response. Meanwhile, Withaferin A, lipoic acid, major royal jelly proteins, and berberine can activate SIRT3 or upregulate its expression, thereby alleviating liver damage. SIRT3 can effectively slow down the progression of liver disease and protect the liver from further damage. The use of SIRT3 as a pharmacological target for the treatment of liver disease is a potential therapeutic approach.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}