{"title":"Triptolide nanoemulsion gel as a transdermal drug delivery system: preparation, pharmacokinetics, and rheumatoid arthritis evaluation.","authors":"Meng Yang, Dishun Yang, Lu Han, Zhimin Fan, Jiyong Liu, Yongfang Yuan","doi":"10.2174/1567201821666230808114519","DOIUrl":"https://doi.org/10.2174/1567201821666230808114519","url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop and evaluate triptolide nanoemulsion gels (TP-NE gels) as a transdermal drug delivery system.</p><p><strong>Methods: </strong>TP-NE was prepared and optimized via emulsification and the central composite design response surface method. The optimized TP-NE gel was evaluated in vitro and in vivo. TP-NE gel microstructure, in vitro and in vivo pharmacokinetics, and anti-rheumatoid arthritis effects were studied to evaluate the feasibility of its percutaneous administration.</p><p><strong>Results: </strong>The Optimized TP-NE was observed using a Malvern Autosizer Nano ZS 90 inspection system and a transmission electron microscope (TEM). The nanoemulsion had an average size of 162.9 ± 0.281 nm, a polydispersity index of 0.272 ± 0.024, a zeta potential of -30.03 ± 2.01 mV, and mostly spherical and uniform morphology. In addition, the TP-NE gel pharmacokinetics, assessed via a skin-blood two-site synchronous microdialysis, revealed that TP was higher in the skin than in the blood. TP-NE gel is crucial in reducing knee edema, inhibiting inflammation, and treating rheumatoid arthritis by regulating tumor necrosis factor-alpha, interleukin-1β, and -6 levels.</p><p><strong>Conclusion: </strong>The TP-NE gel is a promising local delivery method for rheumatoid arthritis (RA)-associated edema and inflammation and can serve as a prospective platform for percutaneous TP administration.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9964291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The blood-prostate barrier: an obstacle to drug delivery into the prostate.","authors":"Yixuan Mou, Min Cao, Dahong Zhang","doi":"10.2174/1567201821666230807152520","DOIUrl":"https://doi.org/10.2174/1567201821666230807152520","url":null,"abstract":"<p><p>The blood-prostate barrier (BPB), a non-static physical barrier, stands as an obstacle between the prostate stroma and the lumen of the prostate gland tube. The barrier has the ability to dynamically regulate and strictly control the mass exchange between the blood and the prostate, thereby limiting drug penetration into the prostate. The basement membrane, fibrous stromal layer, capillary endothelial cell, prostatic ductal epithelial cell, lipid layer, etc., have been confirmed to be involved in the composition of the barrier structure and altered membrane permeability mainly by regulating the size of paracellular ion pores. Various studies have been conducted to improve the efficiency of drug therapy for prostate diseases by changing the administration approaches, improving barrier permeability and increasing drug penetration. To gain a full understanding of BPB, the composition of BPB, the methodology for evaluating the permeability of BPB and alterations in barrier function under pathological conditions are summarized in this review. To find a shortcut for drug delivery across BPB, the biodistribution of drugs in the prostate and different methods of improving drug penetration across BPB are outlined. This review offers an applied perspective on recent advances in drug delivery across BPB.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10008296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wentao Xu, Xiaowen Qin, Yang Liu, Jun Chen, Yuguang Wang
{"title":"Advances in Enzyme-responsive Supramolecular In situ Self-assembled Peptide for Drug Delivery.","authors":"Wentao Xu, Xiaowen Qin, Yang Liu, Jun Chen, Yuguang Wang","doi":"10.2174/1567201820666230726151607","DOIUrl":"https://doi.org/10.2174/1567201820666230726151607","url":null,"abstract":"<p><p>Because of low immunogenicity, ease of modification, and inherent biosafety, peptides have been well recognized as vehicles to deliver therapeutic agents to targeted regions with improved pharmacokinetic characteristics. Enzyme-responsive self-assembled peptides (ERSAPs) show superiority over their naive forms due to their enhanced targeting efficacy and long-retention property. In this review, we have summarized recent advances in the therapeutic application of ERSAPs, mainly focusing on their self-therapeutic properties and potential as vehicles to deliver different drugs.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Li, Yongjing Cao, Xiaojie Zhang, Min An, Yanhua Liu
{"title":"WITHDRAWN: The Application of Nanodrug Delivery System with Sequential Drug Release Strategies in Cancer Therapy","authors":"Juan Li, Yongjing Cao, Xiaojie Zhang, Min An, Yanhua Liu","doi":"10.2174/1567201820666230713164811","DOIUrl":"10.2174/1567201820666230713164811","url":null,"abstract":"<p><p>Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been\u0000withdrawn of the journal \"Current Drug Delivery\".</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously\u0000submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere\u0000must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting\u0000the article for publication the authors agree that the publishers have the legal right to take appropriate action against the\u0000authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright\u0000of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brenda Regina de Araujo, Tatielle do Nascimento, Ana Paula Dos Santos Matos, Vanessa Brandão de Souza Belmiro, Mariana Sato de Souza de Bustamante Monteiro, Ralph Santos-Oliveira, Eduardo Ricci-Junior
{"title":"Nanocarriers for Sirna Delivery Aimed at the Treatment of Melanoma: Systematic Review.","authors":"Brenda Regina de Araujo, Tatielle do Nascimento, Ana Paula Dos Santos Matos, Vanessa Brandão de Souza Belmiro, Mariana Sato de Souza de Bustamante Monteiro, Ralph Santos-Oliveira, Eduardo Ricci-Junior","doi":"10.2174/1567201820666230425234700","DOIUrl":"https://doi.org/10.2174/1567201820666230425234700","url":null,"abstract":"<p><strong>Background: </strong>Melanoma is a malignant skin cancer type with a high lethality rate due to active metastasis. Among the risk factors for its development is exposure to ultraviolet radiation (UV) and phenotypical characteristics such as clear skin and eyes. Given the difficulties of the conventional therapy, the high cost of the treatment and the low bioavailability of drugs, it is important to develop new therapeutic methods to circumvent this situation. Nanosystems such as micelles, liposomes and nanoparticles present advantages when compared to conventional treatments.</p><p><strong>Objective: </strong>The objective of this paper is to carry out a literature review based on articles that dealt with the use of siRNA-loaded nanosystems for the treatment of melanoma, with trials carried out in vivo to assess tumor size.</p><p><strong>Methods: </strong>The search was conducted in the Web of Science and PubMed databases considering the last 5 years, that is, the period between January 2017 to December 2021. The \"SiRNA and Drug Delivery Systems and Melanoma\" keywords were used in both databases, and the articles were analyzed using the inclusion and exclusion criteria established for this paper.</p><p><strong>Results: </strong>The results obtained indicated that using siRNA transported via nanosystems was capable of silencing the BRAF tumor genes and of reducing tumor size and weight, not presenting in vitro and/or in vivo toxicity.</p><p><strong>Conclusion: </strong>Such being the case, the development of these systems becomes a non-invasive and promising option for the treatment of melanoma.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biological Properties of Arginine-rich Peptides and their Application in Cargo Delivery to Cancer.","authors":"Minghai Ma, Ruizhao Zhao, Xing Li, Minxuan Jing, Rundong Song, Jinhai Fan","doi":"10.2174/1567201820666230417083350","DOIUrl":"https://doi.org/10.2174/1567201820666230417083350","url":null,"abstract":"Cell-penetrating peptides (CPPs) comprise short peptides of fewer than 30 amino acids, which are rich in arginine (Arg) or lysine (Lys). CPPs have attracted interest in the delivery of various cargos, such as drugs, nucleic acids, and other macromolecules over the last 30 years. Among all types of CPPs, arginine-rich CPPs exhibit higher transmembrane efficiency due to bidentate bonding between their guanidinium groups and negatively charged cellular components. Besides, endosome escape can be induced by arginine-rich CPPs to protect cargo from lysosome-dependent degradation. Here we summarize the function, design principles, and penetrating mechanisms of arginine-rich CPPs, and outline their biomedical applications in drug delivery and biosensing in tumors.","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9736850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingxia Lu, Yee Yee Khine, Yuying Shen, Martina H Stenzel
{"title":"WITHDRAWN: Conjugation of Ruthenium Drugs to Nanocellulose using\u0000Boronic Ester","authors":"Mingxia Lu, Yee Yee Khine, Yuying Shen, Martina H Stenzel","doi":"10.2174/1567201820666230216110631","DOIUrl":"10.2174/1567201820666230216110631","url":null,"abstract":"<p><p>Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been\u0000withdrawn.</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php.</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously\u0000submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere\u0000must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting\u0000the article for publication the authors agree that the publishers have the legal right to take appropriate action against the\u0000authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright\u0000of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}