Current drug delivery最新文献

筛选
英文 中文
Triptolide nanoemulsion gel as a transdermal drug delivery system: preparation, pharmacokinetics, and rheumatoid arthritis evaluation. 雷公藤甲素纳米乳凝胶作为透皮给药系统:制备、药代动力学和类风湿关节炎评估。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-08-08 DOI: 10.2174/1567201821666230808114519
Meng Yang, Dishun Yang, Lu Han, Zhimin Fan, Jiyong Liu, Yongfang Yuan
{"title":"Triptolide nanoemulsion gel as a transdermal drug delivery system: preparation, pharmacokinetics, and rheumatoid arthritis evaluation.","authors":"Meng Yang,&nbsp;Dishun Yang,&nbsp;Lu Han,&nbsp;Zhimin Fan,&nbsp;Jiyong Liu,&nbsp;Yongfang Yuan","doi":"10.2174/1567201821666230808114519","DOIUrl":"https://doi.org/10.2174/1567201821666230808114519","url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop and evaluate triptolide nanoemulsion gels (TP-NE gels) as a transdermal drug delivery system.</p><p><strong>Methods: </strong>TP-NE was prepared and optimized via emulsification and the central composite design response surface method. The optimized TP-NE gel was evaluated in vitro and in vivo. TP-NE gel microstructure, in vitro and in vivo pharmacokinetics, and anti-rheumatoid arthritis effects were studied to evaluate the feasibility of its percutaneous administration.</p><p><strong>Results: </strong>The Optimized TP-NE was observed using a Malvern Autosizer Nano ZS 90 inspection system and a transmission electron microscope (TEM). The nanoemulsion had an average size of 162.9 ± 0.281 nm, a polydispersity index of 0.272 ± 0.024, a zeta potential of -30.03 ± 2.01 mV, and mostly spherical and uniform morphology. In addition, the TP-NE gel pharmacokinetics, assessed via a skin-blood two-site synchronous microdialysis, revealed that TP was higher in the skin than in the blood. TP-NE gel is crucial in reducing knee edema, inhibiting inflammation, and treating rheumatoid arthritis by regulating tumor necrosis factor-alpha, interleukin-1β, and -6 levels.</p><p><strong>Conclusion: </strong>The TP-NE gel is a promising local delivery method for rheumatoid arthritis (RA)-associated edema and inflammation and can serve as a prospective platform for percutaneous TP administration.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9964291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The blood-prostate barrier: an obstacle to drug delivery into the prostate. 血-前列腺屏障:药物进入前列腺的障碍。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-08-07 DOI: 10.2174/1567201821666230807152520
Yixuan Mou, Min Cao, Dahong Zhang
{"title":"The blood-prostate barrier: an obstacle to drug delivery into the prostate.","authors":"Yixuan Mou,&nbsp;Min Cao,&nbsp;Dahong Zhang","doi":"10.2174/1567201821666230807152520","DOIUrl":"https://doi.org/10.2174/1567201821666230807152520","url":null,"abstract":"<p><p>The blood-prostate barrier (BPB), a non-static physical barrier, stands as an obstacle between the prostate stroma and the lumen of the prostate gland tube. The barrier has the ability to dynamically regulate and strictly control the mass exchange between the blood and the prostate, thereby limiting drug penetration into the prostate. The basement membrane, fibrous stromal layer, capillary endothelial cell, prostatic ductal epithelial cell, lipid layer, etc., have been confirmed to be involved in the composition of the barrier structure and altered membrane permeability mainly by regulating the size of paracellular ion pores. Various studies have been conducted to improve the efficiency of drug therapy for prostate diseases by changing the administration approaches, improving barrier permeability and increasing drug penetration. To gain a full understanding of BPB, the composition of BPB, the methodology for evaluating the permeability of BPB and alterations in barrier function under pathological conditions are summarized in this review. To find a shortcut for drug delivery across BPB, the biodistribution of drugs in the prostate and different methods of improving drug penetration across BPB are outlined. This review offers an applied perspective on recent advances in drug delivery across BPB.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10008296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Enzyme-responsive Supramolecular In situ Self-assembled Peptide for Drug Delivery. 酶反应性超分子原位自组装肽的研究进展。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-07-26 DOI: 10.2174/1567201820666230726151607
Wentao Xu, Xiaowen Qin, Yang Liu, Jun Chen, Yuguang Wang
{"title":"Advances in Enzyme-responsive Supramolecular In situ Self-assembled Peptide for Drug Delivery.","authors":"Wentao Xu,&nbsp;Xiaowen Qin,&nbsp;Yang Liu,&nbsp;Jun Chen,&nbsp;Yuguang Wang","doi":"10.2174/1567201820666230726151607","DOIUrl":"https://doi.org/10.2174/1567201820666230726151607","url":null,"abstract":"<p><p>Because of low immunogenicity, ease of modification, and inherent biosafety, peptides have been well recognized as vehicles to deliver therapeutic agents to targeted regions with improved pharmacokinetic characteristics. Enzyme-responsive self-assembled peptides (ERSAPs) show superiority over their naive forms due to their enhanced targeting efficacy and long-retention property. In this review, we have summarized recent advances in the therapeutic application of ERSAPs, mainly focusing on their self-therapeutic properties and potential as vehicles to deliver different drugs.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWN: The Application of Nanodrug Delivery System with Sequential Drug Release Strategies in Cancer Therapy 撤回:采用序贯释药策略的纳米给药系统在癌症治疗中的应用
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-07-13 DOI: 10.2174/1567201820666230713164811
Juan Li, Yongjing Cao, Xiaojie Zhang, Min An, Yanhua Liu
{"title":"WITHDRAWN: The Application of Nanodrug Delivery System with Sequential Drug Release Strategies in Cancer Therapy","authors":"Juan Li, Yongjing Cao, Xiaojie Zhang, Min An, Yanhua Liu","doi":"10.2174/1567201820666230713164811","DOIUrl":"10.2174/1567201820666230713164811","url":null,"abstract":"<p><p>Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been\u0000withdrawn of the journal \"Current Drug Delivery\".</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously\u0000submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere\u0000must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting\u0000the article for publication the authors agree that the publishers have the legal right to take appropriate action against the\u0000authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright\u0000of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocarriers for Sirna Delivery Aimed at the Treatment of Melanoma: Systematic Review. 用于Sirna递送的纳米载体用于治疗黑色素瘤:系统综述。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-04-25 DOI: 10.2174/1567201820666230425234700
Brenda Regina de Araujo, Tatielle do Nascimento, Ana Paula Dos Santos Matos, Vanessa Brandão de Souza Belmiro, Mariana Sato de Souza de Bustamante Monteiro, Ralph Santos-Oliveira, Eduardo Ricci-Junior
{"title":"Nanocarriers for Sirna Delivery Aimed at the Treatment of Melanoma: Systematic Review.","authors":"Brenda Regina de Araujo,&nbsp;Tatielle do Nascimento,&nbsp;Ana Paula Dos Santos Matos,&nbsp;Vanessa Brandão de Souza Belmiro,&nbsp;Mariana Sato de Souza de Bustamante Monteiro,&nbsp;Ralph Santos-Oliveira,&nbsp;Eduardo Ricci-Junior","doi":"10.2174/1567201820666230425234700","DOIUrl":"https://doi.org/10.2174/1567201820666230425234700","url":null,"abstract":"<p><strong>Background: </strong>Melanoma is a malignant skin cancer type with a high lethality rate due to active metastasis. Among the risk factors for its development is exposure to ultraviolet radiation (UV) and phenotypical characteristics such as clear skin and eyes. Given the difficulties of the conventional therapy, the high cost of the treatment and the low bioavailability of drugs, it is important to develop new therapeutic methods to circumvent this situation. Nanosystems such as micelles, liposomes and nanoparticles present advantages when compared to conventional treatments.</p><p><strong>Objective: </strong>The objective of this paper is to carry out a literature review based on articles that dealt with the use of siRNA-loaded nanosystems for the treatment of melanoma, with trials carried out in vivo to assess tumor size.</p><p><strong>Methods: </strong>The search was conducted in the Web of Science and PubMed databases considering the last 5 years, that is, the period between January 2017 to December 2021. The \"SiRNA and Drug Delivery Systems and Melanoma\" keywords were used in both databases, and the articles were analyzed using the inclusion and exclusion criteria established for this paper.</p><p><strong>Results: </strong>The results obtained indicated that using siRNA transported via nanosystems was capable of silencing the BRAF tumor genes and of reducing tumor size and weight, not presenting in vitro and/or in vivo toxicity.</p><p><strong>Conclusion: </strong>Such being the case, the development of these systems becomes a non-invasive and promising option for the treatment of melanoma.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Properties of Arginine-rich Peptides and their Application in Cargo Delivery to Cancer. 富含精氨酸肽的生物学特性及其在肿瘤转运中的应用。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-04-17 DOI: 10.2174/1567201820666230417083350
Minghai Ma, Ruizhao Zhao, Xing Li, Minxuan Jing, Rundong Song, Jinhai Fan
{"title":"Biological Properties of Arginine-rich Peptides and their Application in Cargo Delivery to Cancer.","authors":"Minghai Ma,&nbsp;Ruizhao Zhao,&nbsp;Xing Li,&nbsp;Minxuan Jing,&nbsp;Rundong Song,&nbsp;Jinhai Fan","doi":"10.2174/1567201820666230417083350","DOIUrl":"https://doi.org/10.2174/1567201820666230417083350","url":null,"abstract":"Cell-penetrating peptides (CPPs) comprise short peptides of fewer than 30 amino acids, which are rich in arginine (Arg) or lysine (Lys). CPPs have attracted interest in the delivery of various cargos, such as drugs, nucleic acids, and other macromolecules over the last 30 years. Among all types of CPPs, arginine-rich CPPs exhibit higher transmembrane efficiency due to bidentate bonding between their guanidinium groups and negatively charged cellular components. Besides, endosome escape can be induced by arginine-rich CPPs to protect cargo from lysosome-dependent degradation. Here we summarize the function, design principles, and penetrating mechanisms of arginine-rich CPPs, and outline their biomedical applications in drug delivery and biosensing in tumors.","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9736850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
WITHDRAWN: Conjugation of Ruthenium Drugs to Nanocellulose usingBoronic Ester 撤回:使用硼酸酯将钌药物与纳米纤维素共轭
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-02-16 DOI: 10.2174/1567201820666230216110631
Mingxia Lu, Yee Yee Khine, Yuying Shen, Martina H Stenzel
{"title":"WITHDRAWN: Conjugation of Ruthenium Drugs to Nanocellulose using\u0000Boronic Ester","authors":"Mingxia Lu, Yee Yee Khine, Yuying Shen, Martina H Stenzel","doi":"10.2174/1567201820666230216110631","DOIUrl":"10.2174/1567201820666230216110631","url":null,"abstract":"<p><p>Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been\u0000withdrawn.</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php.</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously\u0000submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere\u0000must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting\u0000the article for publication the authors agree that the publishers have the legal right to take appropriate action against the\u0000authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright\u0000of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial activity of a novel glycyrrhizic acid-loaded chitosan composite nanogel in vitro against Staphylococcus aureus small colony variants. 新型甘草酸负载壳聚糖复合纳米凝胶在体外对金黄色葡萄球菌小菌落变种的抗菌活性。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-01-17 DOI: 10.2174/1567201820666230117150253
Mujie Ju, Jinhuan Liu, Ding Guan, Nannan Leng, Samah Attia Algharib, Ali Sobhy Dawood, Wanhe Luo
{"title":"Antibacterial activity of a novel glycyrrhizic acid-loaded chitosan composite nanogel in vitro against Staphylococcus aureus small colony variants.","authors":"Mujie Ju, Jinhuan Liu, Ding Guan, Nannan Leng, Samah Attia Algharib, Ali Sobhy Dawood, Wanhe Luo","doi":"10.2174/1567201820666230117150253","DOIUrl":"10.2174/1567201820666230117150253","url":null,"abstract":"<p><p>Background This study aimed to improve the sustained and controlled release of glycyrrhizic acid to the infected site of Staphylococcus aureus small colony variants (SCVs). Methods The glycyrrhizic acid-loaded chitosan composite nanogel was prepared by inclusion action, Schiff's base formation, and electrostatic action. Furthermore, the formulation screening, characteristics, in vitro release, and antibacterial activity of the glycyrrhizic acid composite nanogel were explored. Results The final optimal formula comprised 10 mg/mL (chitosan) and 50 μL (glutaraldehyde). The loading capacity, encapsulation efficiency, mean size, polydispersity index, and zeta potential were 8.8%±1.6%, 92.1%±2.8%, 478.3±2.8 nm, 0.37±0.10, and 25.3±3.6 mv, respectively. Scanning electron microscope images showed a spherical shape with a relatively uniform distribution. The in vitro release study showed that glycyrrhizic acid composite nanogel exhibited a biphasic pattern with a sustained release of 52.1%±2.0% at 48 h in the pH 5.5 PBS. The minimum inhibitory and minimum biofilm inhibitory concentrations of glycyrrhizic acid composite nanogel against SCVs were 0.625 μg/mL. The time-killing curves and live/dead bacterial staining showed that glycyrrhizic acid composite nanogel had a stronger curative effect against SCVs strain with concentration-dependent. Conclusion This study provides promising glycyrrhizic acid composite nanogel to improve the treatment of SCV infection.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10541090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Advancements for Targeting Solid Tumors via Protein and Peptide Drug Delivery (PPD). 通过蛋白质和肽药物递送(PPD)靶向实体肿瘤的智能进展。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-01-01 DOI: 10.2174/1567201819666220427132734
Siddharth Singh, Priyanka Sanwal, Samir Bhargava, Ashok Behera, Shuchi Upadhyay, Md Habban Akhter, Manish Gupta, Shraddha Manish Gupta
{"title":"Smart Advancements for Targeting Solid Tumors <i>via</i> Protein and Peptide Drug Delivery (PPD).","authors":"Siddharth Singh,&nbsp;Priyanka Sanwal,&nbsp;Samir Bhargava,&nbsp;Ashok Behera,&nbsp;Shuchi Upadhyay,&nbsp;Md Habban Akhter,&nbsp;Manish Gupta,&nbsp;Shraddha Manish Gupta","doi":"10.2174/1567201819666220427132734","DOIUrl":"https://doi.org/10.2174/1567201819666220427132734","url":null,"abstract":"<p><p>Proteins and peptides possess considerable potential in treating solid tumors because of their unique properties. At present, there are over 100 peptide-based formulations on the market. Today, peptides and proteins are in more demand due to their selective nature and high target-binding efficiency. Targeting solid tumors with compounds of molecular weight less than 10 kDa are much more desirable because they undergo excessive penetration in view of the fact that they are small sized. The solid tumors have thick tissues and possess excessive interstitial fluid pressure, because of which high molecular compounds cannot enter. The properties of proteins and peptides induce low toxic effects and lessen the major side effects caused by chemical-based drugs. However, their delivery is quite challenging as most proteins and peptides stop functioning therapeutically when following a parenteral route of administration. This paper elaborates on the importance of new age formulations of peptides and proteins followed by their recently documented advancements that increase their stability and delay their metabolism, which helps to target solid tumors.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"20 6","pages":"669-682"},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular Activity of Poly (DL-Lactide-co-Glycolide) Nanoparticles Encapsulated with Prothionamide, Pyrazinamide, Levofloxacin, Linezolid, or Ethambutol on Multidrug-Resistant Mycobacterium tuberculosis. 用丙硫酰胺、吡嗪酰胺、左氧氟沙星、利奈唑胺或乙胺丁醇包封的聚乳酸-羟基乙酸酯纳米颗粒对耐多药结核分枝杆菌的胞内活性
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-01-01 DOI: 10.2174/1567201819666220511120215
Huixian Jiang, Xiang Li, Zhenjian Xing, Qun Niu, Jiangping Xu
{"title":"Intracellular Activity of Poly (DL-Lactide-co-Glycolide) Nanoparticles Encapsulated with Prothionamide, Pyrazinamide, Levofloxacin, Linezolid, or Ethambutol on Multidrug-Resistant <i>Mycobacterium tuberculosis</i>.","authors":"Huixian Jiang,&nbsp;Xiang Li,&nbsp;Zhenjian Xing,&nbsp;Qun Niu,&nbsp;Jiangping Xu","doi":"10.2174/1567201819666220511120215","DOIUrl":"https://doi.org/10.2174/1567201819666220511120215","url":null,"abstract":"<p><strong>Background: </strong>Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) is a major cause of death amongst tuberculosis patients. Nanomedicine avoids some limitations of conventional drug treatment and increases therapeutic efficacy against bacterial infections. However, the effect of anti-TB drug nanoparticle (NP) compounds in anti-TB regimens against MDR-TB remains unclear.</p><p><strong>Objective: </strong>The objective of this article is to prepare levofloxacin, linezolid, ethambutol, prothionamide, and pyrazinamide encapsulated NPs and to evaluate their therapeutic efficacy against MDR-TB in macrophages.</p><p><strong>Methods: </strong>Drug-loaded PLGA NPs were prepared by the multiple emulsion method. The colocalization, intracellular release, and anti-TB activity of these NPs were investigated on cultured macrophages. The immune phenotype of the macrophages, including their mitochondrial membrane potential, reactive oxygen species (ROS), and nitric oxide (NO) production, was evaluated following treatment with NPs or free drug compounds.</p><p><strong>Results: </strong>All drug-loaded PLGA NPs were spherical in shape, 150 to 210 nm in size, and showed 14.22% to 43.51% encapsulation efficiencies and long-duration release. Drug-loaded PLGA NPs were mainly distributed in the cytoplasm of macrophages, showed high cellular compatibility, and maintained their concentration for at least 13 days. Compared with the free drug compounds, the number of colonies after exposure to PLGA NP compounds was significantly less. The enhanced antibacterial activity of the NP compounds may be due to the enhanced levels of ROS and NO and the increased early apoptosis stress within M. tuberculosis-infected macrophages additionally.</p><p><strong>Conclusion: </strong>The application of PLGA NP compounds not only enhances drug efficacy but also induces innate bactericidal events in macrophages, confirming this as a promising approach for MDR-TB therapy.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"20 3","pages":"306-316"},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9217797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信