Current drug delivery最新文献

筛选
英文 中文
Nanomaterials as a Potential Target for Infectious Parasitic Agents. 作为传染性寄生病原体潜在靶标的纳米材料。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230223085403
Rawan H Alsharedeh, Meriem Rezigue, Rasha M Bashatwah, Haneen Amawi, Alaa A A Aljabali, Mohammad A Obeid, Murtaza M Tambuwala
{"title":"Nanomaterials as a Potential Target for Infectious Parasitic Agents.","authors":"Rawan H Alsharedeh, Meriem Rezigue, Rasha M Bashatwah, Haneen Amawi, Alaa A A Aljabali, Mohammad A Obeid, Murtaza M Tambuwala","doi":"10.2174/1567201820666230223085403","DOIUrl":"10.2174/1567201820666230223085403","url":null,"abstract":"<p><p>Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"828-851"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10758438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Evaluation of the In situ Gel-forming Chitosan Hydrogels for Nasal Delivery of Morphine in a Single Unit dose in Rats to Enhance the Analgesic Responses. 制备和评估原位成胶壳聚糖水凝胶,用于在大鼠鼻腔中以单剂量给药吗啡以增强镇痛效果
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230724161205
Hossein Kamali, Mohsen Tafaghodi, Farhad Eisvand, S Mohammad Ahmadi-Soleimani, Mina Khajouee, Hosnieh Ghazizadeh, Jafar Mosafer
{"title":"Preparation and Evaluation of the <i>In situ</i> Gel-forming Chitosan Hydrogels for Nasal Delivery of Morphine in a Single Unit dose in Rats to Enhance the Analgesic Responses.","authors":"Hossein Kamali, Mohsen Tafaghodi, Farhad Eisvand, S Mohammad Ahmadi-Soleimani, Mina Khajouee, Hosnieh Ghazizadeh, Jafar Mosafer","doi":"10.2174/1567201820666230724161205","DOIUrl":"10.2174/1567201820666230724161205","url":null,"abstract":"<p><strong>Introduction: </strong>In this study, an <i>in situ</i> gel-forming chitosan hydrogel was prepared with the use of glutamate salt of chitosan (Ch-Ga), β-glycerophosphate (Gp), and morphine (Mor). The paper is focused on <i>in vitro</i> physicochemical properties and <i>in-vivo</i> analgesic effects of the prepared chitosan hydrogel.</p><p><strong>Method: </strong>The thermosensitive properties of prepared chitosan hydrogel were evaluated during the different temperatures and times. The physicochemical properties of chitosan hydrogel were investigated by infrared (IR) spectroscopy and X-ray diffraction analysis (XRD). Also, its cell cytotoxicity effects were evaluated in murine NIH/3T3 normal cells. Subsequently, the distribution of chitosan hydrogel in the nasal cavity of rats and its analgesic responses were evaluated. The prepared chitosan hydrogel showed that it could be gelled at the temperature of 34 °C before leaving the nose in the shortest possible time of 30 s.</p><p><strong>Result: </strong>The analgesic responses of the intranasal (IN) injection of chitosan hydrogel (IN-chitosan hydrogel, 10 mg Mor/kg) in a single unit dose in rat relative to the placebo and intranasal or intraperitoneal (IP) injection of free morphine solution (IN-Free Mor or IP-Free Mor, 10 mg Mor/kg) via the hot plate test, reveal that the IN-chitosan hydrogel could induce fast analgesic effects of morphine with maximum possible effect (MPE) of 93% after 5 min compare to the IN-Free Mor and IP-Free Mor with MPE of 80% after 15 min and 66% after 30 min, respectively. Also, prolonged analgesic effects with MPE of 78 % after 6 h of injection were only seen in the IN-chitosan hydrogel injected group. The obtained fluorescent images of rat's brain injected with IN-chitosan hydrogel containing doxorubicine (Dox) as a fluorescent agent showed that the mucosal adhesive and absorption enhancer properties of IN-chitosan hydrogel resulting in longer presence of them in the nasal cavity of rats followed by more absorption of Dox from the blood vessels of olfactory bulbs with a 74% color intensity compared to the IN-Free Mor and IN-Free Dox with 15%.</p><p><strong>Conclusion: </strong>These data reveal that the IN-chitosan hydrogel could induce fast and prolonged analgesic effects of morphine compare to the IN/IP-Free Mor, which could be considered as an <i>in situ</i> gel-forming thermosensitive chitosan hydrogel for nasal delivery of wide ranges of therapeutic agents.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1024-1035"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10229131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Etanercept-loaded Nano-emulsion for Targeted Treatment of Inflammatory Arthritis via Draining Lymph Node. 通过引流淋巴结靶向治疗炎症性关节炎的新型依那西普纳米乳剂
IF 2.8 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201821666230810115230
Chenglong Li, Guanting Lu, Yue Jiang, Huaiyu Su, Chen Li
{"title":"A Novel Etanercept-loaded Nano-emulsion for Targeted Treatment of Inflammatory Arthritis <i>via</i> Draining Lymph Node.","authors":"Chenglong Li, Guanting Lu, Yue Jiang, Huaiyu Su, Chen Li","doi":"10.2174/1567201821666230810115230","DOIUrl":"10.2174/1567201821666230810115230","url":null,"abstract":"<p><strong>Background: </strong>Rheumatoid arthritis (RA) is a systemic autoimmune disease (AD), and the global incidence rate is 0.5 ~ 1%. Existing medications might reduce symptoms, however, there is no known cure for this illness. Etanercept (EN) can competitively inhibit TNF-α binding to the TNF receptor on the cell surface to treat RA. However, subcutaneous injection of free EN predisposes to systemic distribution and induces immune system hypofunction. Draining lymph nodes (LNs) play a significant role in the onset, maintenance, and progression of RA as they are the primary sites of aberrant immune response and inflammatory cytokine production.</p><p><strong>Aim: </strong>The purpose of this study was to successfully treat RA with etanercept by encapsulating it in nanoemulsions (NEs/EN) and then delivering it specifically to draining LNs. The EN-loaded NEs were prepared by high-pressure homogenization method and modified with DSPE-mPEG<sub>2000</sub> and Ca(OH)<sub>2</sub>.</p><p><strong>Methods: </strong>A novel nano-emulsion (NE) was constructed to deliver EN (NE/EN) to RA-draining LNs. To decrease aggregation and load EN, DSPE-mPEG<sub>2000</sub> and Ca(OH)<sub>2</sub> were successively decorated on the surface of the lipid injectable emulsions. The hydrodynamic diameter and morphology of NEs/EN were investigated by using a laser particle size analyzer and transmission electron microscopy, respectively. The <i>in vivo</i> fluorescence imaging system was used to study the <i>in vivo</i> LN targeting ability of the formulation. In the therapeutic experiment, NEs/EN was subcutaneously administrated to inhibit the development of the mouse arthritis model.</p><p><strong>Results: </strong>Circular dichroism spectrum and L929 cell experiment confirmed that NEs encapsulation had no impact on the biological activity of EN. <i>In vivo</i> investigation on collagen-induced arthritis (CIA) mouse model showed that NEs/EN have good inguinal lymph node targeting capabilities, as well as, anti-inflammatory effect against RA. Compared with the free group, the paw thickness and arthritic score in NEs/EN group were significantly alleviated. Moreover, the concentration of pro-inflammatory cytokines TNF-α and IL-1β in NEs/EN-treated mice was lower than that in free EN.</p><p><strong>Conclusion: </strong>NEs/EN effectively improve the effectiveness of EN in the treatment of RA. Our work provides an experimental foundation for expanding the clinical application of EN.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1106-1113"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9977307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysprosium-containing Cobalt Sulfide Nanoparticles as Anticancer Drug Carriers. 作为抗癌药物载体的含镝硫化钴纳米粒子。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201821666230817122011
Govindaraj Sri Varalakshmi, Charan Singh Pawar, Varnitha Manikantan, Archana Sumohan Pillai, Aleyamma Alexander, Bose Allben Akash, N Rajendra Prasad, Israel V M V Enoch
{"title":"Dysprosium-containing Cobalt Sulfide Nanoparticles as Anticancer Drug Carriers.","authors":"Govindaraj Sri Varalakshmi, Charan Singh Pawar, Varnitha Manikantan, Archana Sumohan Pillai, Aleyamma Alexander, Bose Allben Akash, N Rajendra Prasad, Israel V M V Enoch","doi":"10.2174/1567201821666230817122011","DOIUrl":"10.2174/1567201821666230817122011","url":null,"abstract":"<p><strong>Background: </strong>Among various materials designed for anticancer drug transport, sulfide nanoparticles are uniquely intriguing owing to their spectral characteristics. Exploration of newer nanoscale copper sulfide particles with dysprosium doping is reported herein. It leads to a change in the physicochemical properties of the sulfide nanoparticles and hence the difference in drug release and cytotoxicity.</p><p><strong>Objective: </strong>We intend to purport the suitably engineered cobalt sulfide and dysprosium-doped cobalt sulfide nanoparticles that are magnetic and NIR-absorbing, as drug delivery vehicles. The drug loading and release are based on the supramolecular drug complex formation on the surface of the nanoparticles.</p><p><strong>Method: </strong>The nanomaterials are synthesized employing hydrothermal procedures, coated with a biocompatible poly-β-cyclodextrin, and characterized using the methods of diffractometry, microscopy, spectroscopy, thermogravimetry and magnetometry. The sustained drug release is investigated <i> in vitro</i>. 5-Fluorouracil is loaded in the nanocarriers. The empty and 5-fluorouracil-loaded nanocarriers are screened for their anti-breast cancer activity <i>in vitro</i> on MCF-7 cells.</p><p><strong>Results: </strong>The size of the nanoparticles is below 10 nm. They show soft ferromagnetic characteristics. Further, they show broad NIR absorption bands extending up to 1200 nm, with the dysprosium-doped material displaying greater absorbance. The drug 5-fluorouracil is encapsulated in the nanocarriers and released sustainably, with the expulsion duration extending over 10 days. The IC<sub>50</sub> of the blank and the drug-loaded cobalt sulfide are 16.24 ± 3.6 and 12.2 ± 2.6 μg mL<sup>-1</sup>, respectively. For the drug-loaded, dysprosium-doped nanocarrier, the IC<sub>50</sub> value is 9.7 ± 0.3 μg mL<sup>-1</sup>.</p><p><strong>Conclusion: </strong>The ultrasmall nanoparticles possess a size suitable for drug delivery and are dispersed well in the aqueous medium. The release of the loaded 5-fluorouracil is slow and sustained. The anticancer activity of the drug-loaded nanocarrier shows an increase in efficacy, and the cytotoxicity is appreciable due to the controlled release. The nanocarriers show multi-functional characteristics, <i>i.e.</i>, magnetic and NIR-absorbing, and are promising drug delivery agents.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1128-1141"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10023664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roxithromycin and rhEGF Co-loaded Reactive Oxygen Species Responsive Nanoparticles for Accelerating Wound Healing. 罗红霉素和 rhEGF 共载活性氧反应纳米粒子用于加速伤口愈合。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230512103750
Jun Ding, Dan Chen, Jun Hu, Dinglin Zhang, Yajun Gou, Yaguang Wu
{"title":"Roxithromycin and rhEGF Co-loaded Reactive Oxygen Species Responsive Nanoparticles for Accelerating Wound Healing.","authors":"Jun Ding, Dan Chen, Jun Hu, Dinglin Zhang, Yajun Gou, Yaguang Wu","doi":"10.2174/1567201820666230512103750","DOIUrl":"10.2174/1567201820666230512103750","url":null,"abstract":"<p><strong>Background: </strong>Bacterial infection can delay wound healing and is therefore a major threat to public health. Although various strategies have been developed to treat bacterial infections, antibiotics remain the best option to combat infections. The inclusion of growth factors in the treatment approach can also accelerate wound healing. The co-delivery of antibiotics and growth factors for the combined treatment of wounds needs further investigation.</p><p><strong>Objective: </strong>Here we aimed to develop antibiotic and growth factor co-loaded nanoparticles (NPs) to treat <i>Staphylococcus aureus</i>-infected wounds.</p><p><strong>Methods: </strong>By using our previously prepared reactive oxygen species-responsive material (Oxi-αCD), roxithromycin (ROX)-loaded NPs (ROX/Oxi-αCD NPs) and recombinant human epidermal growth factor (rhEGF)/ROX co-loaded NPs (rhEGF/ROX/Oxi-αCD NPs) were successfully fabricated. The <i>in vivo</i> efficacy of this prepared nanomedicine was evaluated in mice with S. aureus-infected wounds.</p><p><strong>Results: </strong>ROX/Oxi-αCD NPs and rhEGF/ROX/Oxi-αCD NPs had a spherical structure and their particle sizes were 164 ± 5 nm and 190 ± 8 nm, respectively. The <i>in vitro</i> antibacterial experiments showed that ROX/Oxi-αCD NPs had a lower minimum inhibitory concentration than ROX. The <i>in vivo</i> animal experiments demonstrated that rhEGF/ROX/Oxi-αCD NPs could significantly accelerate the healing of S. aureus-infected wounds as compared to the free ROX drug and ROX/Oxi-αCD NPs (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>ROX and rhEGF co-loaded NPs can effectively eliminate bacteria in wounds and accelerate wound healing. Our present work could provide a new strategy to combat bacteria-infected wounds.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"753-762"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9462868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Fate of 1,8-cineole as a Chemical Penetrant: A Review. 作为化学渗透剂的 1,8-蒎烯的命运:综述。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230509101602
Ligema Dao, Yu Dong, Lin Song, Chula Sa
{"title":"The Fate of 1,8-cineole as a Chemical Penetrant: A Review.","authors":"Ligema Dao, Yu Dong, Lin Song, Chula Sa","doi":"10.2174/1567201820666230509101602","DOIUrl":"10.2174/1567201820666230509101602","url":null,"abstract":"<p><p>The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"697-708"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9796488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnology-based Drug Delivery for Alzheimer's and Parkinson's Diseases. 基于纳米技术的阿尔茨海默氏症和帕金森氏症药物输送。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230707113405
Phuong-Trang Nguyen-Thi, Thanh-Tam Ho, Thuy Trang Nguyen, Giau Van Vo
{"title":"Nanotechnology-based Drug Delivery for Alzheimer's and Parkinson's Diseases.","authors":"Phuong-Trang Nguyen-Thi, Thanh-Tam Ho, Thuy Trang Nguyen, Giau Van Vo","doi":"10.2174/1567201820666230707113405","DOIUrl":"10.2174/1567201820666230707113405","url":null,"abstract":"<p><p>The delivery of drugs to the brain is quite challenging in the treatment of the central nervous system (CNS) diseases due to the blood-brain barrier and the blood-cerebrospinal fluid barrier. However, significant developments in nanomaterials employed by nanoparticle drug-delivery systems have substantial potential to cross or bypass these barriers leading to enhanced therapeutic efficacies. Advances in nanoplatform, nanosystems based on lipids, polymers and inorganic materials have been extensively studied and applied in treating Alzheimer's and Parkinson's diseases. In this review, various types of brain drug delivery nanocarriers are classified, summarized, and their potential as drug delivery systems in Alzheimer's and Parkinson's diseases is discussed. Finally, challenges facing the clinical translation of nanoparticles from bench to bedside are highlighted.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"917-931"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10123082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-platform Strategies of Herbal Components for the Management of Rheumatoid Arthritis: A Review on the Battle for Next-Generation Formulations. 治疗类风湿性关节炎的草药成分纳米平台战略:新一代制剂之争综述》。
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201821666230825102748
Jyoti Prabha, Mohit Kumar, Devesh Kumar, Shruti Chopra, Amit Bhatia
{"title":"Nano-platform Strategies of Herbal Components for the Management of Rheumatoid Arthritis: A Review on the Battle for Next-Generation Formulations.","authors":"Jyoti Prabha, Mohit Kumar, Devesh Kumar, Shruti Chopra, Amit Bhatia","doi":"10.2174/1567201821666230825102748","DOIUrl":"10.2174/1567201821666230825102748","url":null,"abstract":"<p><strong>Introduction: </strong>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that initially affects small joints and then spreads to the bigger joints. It also affects other organs of the body such as lungs, eyes, kidneys, heart, and skin. In RA, there is destruction of cartilage and joints, and ligaments and tendons become brittle. Damage to the joints leads to abnormalities and bone degradation, which may be quite painful for the patient.</p><p><strong>Method: </strong>The nano-carriers such as liposomes, phytosomes, nanoparticles, microcapsules, and niosomes are developed to deliver the encapsulated phytoconstituents to targeted sites for the better management of RA.</p><p><strong>Results: </strong>The phytoconstituents loaded nano-carriers have been used in order to increase bioavailability, stability and reduce the dose of an active compound. In one study, the curcumin-loaded phytosomes increase the bioavailability of curcumin and also provides relief from RA symptoms. The drug-loaded nano-carriers are the better option for the management of RA.</p><p><strong>Conclusion: </strong>In conclusion, there are many anti-arthritic herbal and synthetic medicine available in the market that are currently used in the treatment of RA. However, chronic use of these medications may result in a variety of side effects. Because therapy for RA is frequently necessary for the rest of ones life. The use of natural products may be a better option for RA management. These phytoconstituents, however, have several disadvantages, including limited bioavailability, low stability, and the need for a greater dosage. These problems can be rectified by using nano-technology.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1082-1105"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10069389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetosomes as Potential Nanocarriers for Cancer Treatment. 磁小体作为治疗癌症的潜在纳米载体
IF 2.4 4区 医学
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230619155528
Rawan Alsharedeh, Nid'a Alshraiedeh, Alaa A Aljabali, Murtaza M Tambuwala
{"title":"Magnetosomes as Potential Nanocarriers for Cancer Treatment.","authors":"Rawan Alsharedeh, Nid'a Alshraiedeh, Alaa A Aljabali, Murtaza M Tambuwala","doi":"10.2174/1567201820666230619155528","DOIUrl":"10.2174/1567201820666230619155528","url":null,"abstract":"<p><p>Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1073-1081"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9667269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liposomal Doxorubicin In vitro and In vivo Assays in Non-small Cell Lung Cancer: A Systematic Review 多柔比星脂质体在非小细胞肺癌中的体外和体内试验:系统综述
IF 2.4 4区 医学
Current drug delivery Pub Date : 2023-12-15 DOI: 10.2174/0115672018272162231116093143
Pablo Redruello-Guerrero, Paula Cordoba, Antonio Láinez-Ramos-Bossini, Mario Rivera, Cristina Mesas, Raul Ortiz, Jose Prados, Gloria Perazzoli
{"title":"Liposomal Doxorubicin In vitro and In vivo Assays in Non-small Cell Lung Cancer: A Systematic Review","authors":"Pablo Redruello-Guerrero, Paula Cordoba, Antonio Láinez-Ramos-Bossini, Mario Rivera, Cristina Mesas, Raul Ortiz, Jose Prados, Gloria Perazzoli","doi":"10.2174/0115672018272162231116093143","DOIUrl":"https://doi.org/10.2174/0115672018272162231116093143","url":null,"abstract":"Background: Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. Methods: A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. Results: The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. Conclusion: Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"292 1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138684625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信