{"title":"Anti-Infective Screening of Selected Nine Cannabinoids Against <i>Clostridium perfringens</i> and Influenza A (H5N1) Neuraminidases, and SARS-CoV-2 Main Protease and Spike Protein Interactions.","authors":"Thanet Pitakbut, Oliver Kayser","doi":"10.3390/cimb47030185","DOIUrl":"10.3390/cimb47030185","url":null,"abstract":"<p><p>Recently, cannabinoids have gained scientific interest as a promising anti-infective natural product class, as reported in several studies. However, the existing knowledge is mainly limited to common cannabinoids like THC and CBD. Therefore, this study aims to fill the knowledge gap by investigating the anti-infective potential of nine selected cannabinoids (both common and rare cannabinoids): THC, CBD, CBC, CBE, CBF, CBG, CBL, CBN, and CBT against <i>Clostridium perfringens</i> and Influenza A (H5N1) neuraminidases and SARS-CoV-2 main protease and spike protein-human ACE2 interaction using a standard in vitro biochemical enzyme-binding assay. As a result, to the authors' knowledge, this study is the first to demonstrate the most promising effect of CBG over others in its class against <i>C. perfringens</i> and influenza A (H5N1) neuraminidases and SARS-CoV-2 main protease and spike protein-human ACE2 interaction. In comparison to CBG, CBD and THC were the second and third most promising candidates. Meanwhile, the other derivatives, such as CBC, CBE, CBF, CBL, CBN, and CBT, showed at least one anti-infective effect. Our findings during the early drug discovery process indicate a promising anti-infective potential of cannabinoids, which can be considered for further investigation in a biological setup.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felicia Trofin, Petru Cianga, Daniela Constantinescu, Luminița Smaranda Iancu, Roxana Irina Iancu, Diana Păduraru, Eduard Vasile Nastase, Elena Roxana Buzilă, Cătălina Luncă, Corina Maria Cianga, Olivia Simona Dorneanu
{"title":"The Legacy of COVID-19 in Breast Milk: The Association of Elevated Anti-Inflammatory and Antimicrobial Proteins with Vaccination or Infection.","authors":"Felicia Trofin, Petru Cianga, Daniela Constantinescu, Luminița Smaranda Iancu, Roxana Irina Iancu, Diana Păduraru, Eduard Vasile Nastase, Elena Roxana Buzilă, Cătălina Luncă, Corina Maria Cianga, Olivia Simona Dorneanu","doi":"10.3390/cimb47030182","DOIUrl":"10.3390/cimb47030182","url":null,"abstract":"<p><strong>Background: </strong>Breast milk is a rich source of antimicrobial and anti-inflammatory compounds, owing to its diverse array of bioactive molecules. This study explores the presence and activity of natural antimicrobial agents in breast milk, particularly in the context of the SARS-CoV-2 pandemic.</p><p><strong>Materials and methods: </strong>Breast milk samples were collected from 50 breastfeeding mothers, including those who had either been vaccinated against SARS-CoV-2 or had recovered from the infection. These samples were compared with a control group consisting of 10 unvaccinated mothers with no history of COVID-19. Key antimicrobial and immune-regulatory proteins-lactoferrin, lactadherin, furin, tenascin C, granzyme B, and chitinase 3-like 1-were quantified using the Luminex multiplex analyzer.</p><p><strong>Results and discussion: </strong>All targeted biomarkers were detected in breast milk, providing insights into the immune profile transferred to infants following COVID-19 infection or vaccination. These bioactive molecules highlight breastfeeding's role in providing passive immunity and antimicrobial protection. The protein levels were found to be influenced by factors such as maternal inflammation, infant age, delivery mode, and parity, emphasizing the dynamic interaction between maternal immunity, lactation biology, and infant development.</p><p><strong>Conclusion: </strong>Breastfeeding serves as a powerful anti-SARS-CoV-2 defense mechanism, supported by the activity of lactoferrin, lactadherin, and furin, reinforcing its critical role in child health.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Therapeutic Potential of Baicalin and Baicalein in Breast Cancer: A Systematic Review of Mechanisms and Efficacy.","authors":"Bartłomiej Zieniuk, Şuheda Uğur","doi":"10.3390/cimb47030181","DOIUrl":"10.3390/cimb47030181","url":null,"abstract":"<p><p>Cancer remains a leading cause of death globally, with breast cancer being the most commonly diagnosed cancer in women. This systematic review focuses on the therapeutic potential of baicalin and baicalein, two bioactive flavonoids derived from <i>Scutellaria baicalensis</i>, in breast cancer treatment. These compounds exhibit anticancer properties through mechanisms such as apoptosis induction, cell cycle arrest, and inhibition of metastasis. Baicalin and baicalein modulate key signaling pathways, including NF-κB, PI3K/AKT/mTOR, and Wnt/β-catenin, and have shown efficacy in both in vitro and in vivo models. Their synergy with chemotherapy agents and incorporation into nanotechnology-based delivery systems highlight opportunities to enhance therapeutic outcomes. However, current evidence is predominantly preclinical, with limited clinical trials to validate their safety and efficacy in humans. Challenges such as poor bioavailability and rapid metabolism also underscore the need for advanced formulation strategies. This review synthesizes current evidence on the molecular mechanisms, therapeutic efficacy, and potential applications of baicalin and baicalein in breast cancer research.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vascular Endothelial Growth Factor Receptors in the Vascularization of Pancreatic Tumors: Implications for Prognosis and Therapy.","authors":"Craig Grobbelaar, Vanessa Steenkamp, Peace Mabeta","doi":"10.3390/cimb47030179","DOIUrl":"10.3390/cimb47030179","url":null,"abstract":"<p><p>In pancreatic cancer (PC), vascular endothelial growth factor (VEGF) and its primary receptor, vascular endothelial growth factor receptor (VEGFR)-2, are central drivers of angiogenesis and metastasis, with their overexpression strongly associated with poor prognosis. In some PC patients, VEGF levels correlate with disease stage, tumor burden, and survival outcomes. However, therapies targeting VEGF and VEGFR-2, including tyrosine kinase inhibitors (TKIs) and monoclonal antibodies, have demonstrated limited efficacy, partly due to the emergence of resistance mechanisms. Resistance appears to stem from the activation of alternative vascularization pathways. This review explores the multifaceted roles of VEGFRs in pancreatic cancer, including VEGFR-1 and VEGFR-3. Potential strategies to improve VEGFR-targeting therapies, such as combination treatments, the development of more selective inhibitors, and the use of biomarkers, are discussed as promising approaches to enhance treatment efficacy and outcomes.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Vasiliki Benekou, Panagiota Tzitiridou, Theodora Papagrigoriou, Vasiliki Galani, Chrissa Sioka, Athanassios P Kyritsis, Diamanto Lazari, George A Alexiou
{"title":"Antineoplastic Activity of <i>Methyl rosmarinate</i> in Glioblastoma Cells.","authors":"Maria Vasiliki Benekou, Panagiota Tzitiridou, Theodora Papagrigoriou, Vasiliki Galani, Chrissa Sioka, Athanassios P Kyritsis, Diamanto Lazari, George A Alexiou","doi":"10.3390/cimb47030180","DOIUrl":"10.3390/cimb47030180","url":null,"abstract":"<p><p>Glioblastoma (GMB) is a remarkably aggressive brain malignancy characterized by high mortality rates, despite continuous advances in therapeutic approaches. Compounds derived from plants are being studied for their potent medicinal properties in the quest for more efficient therapies. This study investigated the anti-glioma properties of <i>Methyl rosmarinate</i>, a hydroxycinnamic acid isolated from <i>Thymus thracicus</i> Velen, which has previously demonstrated anti-cancer activity in various cell lines. Human glioblastoma cell lines U87 and T98 were treated with <i>Methyl rosmarinate</i> to assess its effect on cell viability, cell cycle distribution and migratory capacity using Trypan blue assay, flow cytometry and scratch wound healing assay, respectively. The combinatorial effects of <i>Methyl rosmarinate</i> and temozolomide were also analyzed with CompoSyn software. According to the outcomes, <i>Methyl rosmarinate</i> significantly reduced cell viability, induced cell death by interfering in cell cycle checkpoints, and inhibited migration in both GMB cell lines. Notably, in U87 cells, the compound showed a synergistic impact with temozolomide, whereas in T98 cells, there was an antagonistic relationship. These results suggest that <i>Methyl rosmarinate</i> has potential anti-glioma properties; however, more in vivo research is needed.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guizhi Liu, Na Tian, Lan Chen, Siyi Xie, Jinyu Hu, Qifang Jin, Chenyu Shao, Mengdi Huang, Qin Su, Jianan Huang, Zhonghua Liu, Shuoqian Liu
{"title":"Transcriptomic Analysis of the Negative Effect of Epigallocatechin-3-Gallate from Tea Plant (<i>Camellia sinensis</i>) on <i>Agrobacterium</i>-Mediated Transformation Efficiency.","authors":"Guizhi Liu, Na Tian, Lan Chen, Siyi Xie, Jinyu Hu, Qifang Jin, Chenyu Shao, Mengdi Huang, Qin Su, Jianan Huang, Zhonghua Liu, Shuoqian Liu","doi":"10.3390/cimb47030178","DOIUrl":"10.3390/cimb47030178","url":null,"abstract":"<p><p><i>Agrobacterium</i>-mediated transformation is a widely used method for plant genetic modification. However, its efficiency in tea plants is notably low, and the underlying molecular mechanisms remain unclear, hindering advancements in the molecular breeding and biology of tea plants. In this study, tobacco was utilized as a model to investigate the effects of various concentrations of epigallocatechin-3-gallate (EGCG) on <i>Agrobacterium</i> transformation efficiency. The results demonstrated that at an EGCG concentration of 0.4 mg/mL, <i>Agrobacterium</i> nearly lost its ability to transform tobacco. Additionally, malondialdehyde content in <i>Agrobacterium</i> was measured before and after EGCG treatment. The findings indicated that EGCG treatment led to an increase in malondialdehyde content. Transcriptome sequencing analysis revealed that differentially expressed genes (DEGs) involved in <i>Agrobacterium</i> flagellar synthesis and secretion systems were down-regulated under EGCG stress. Furthermore, <i>flgE</i>, <i>virB4</i>, and <i>virB6</i> were identified as hub genes through weighted gene co-expression network analysis (WGCNA). These results elucidate the dynamic mechanisms by which EGCG affects <i>Agrobacterium</i> at both the physicochemical and molecular levels, providing a theoretical basis for optimizing genetic transformation in tea plants.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Giovanna Rizzo, Marilena Briglia, Vincenzo Zammuto, Dario Morganti, Caterina Faggio, Federica Impellitteri, Cristiana Roberta Multisanti, Adriana Carol Eleonora Graziano
{"title":"Innovation in Osteogenesis Activation: Role of Marine-Derived Materials in Bone Regeneration.","authors":"Maria Giovanna Rizzo, Marilena Briglia, Vincenzo Zammuto, Dario Morganti, Caterina Faggio, Federica Impellitteri, Cristiana Roberta Multisanti, Adriana Carol Eleonora Graziano","doi":"10.3390/cimb47030175","DOIUrl":"10.3390/cimb47030175","url":null,"abstract":"<p><p>Marine-derived biomaterials are emerging as promising candidates for tissue regeneration due to their sustainability, biocompatibility, bioactivity, and unique chemical structure. This review provides an overview of different marine-derived inorganic and organic materials, such as calcium carbonate, magnesium salts, silica, polysaccharides, bioactive peptides, and lipid-based compounds, and their effects in promoting osteogenesis. Specifically, the osteoinductive, osteoconductive, and osteointegrative activities of traditional and innovative materials that influence key molecular pathways such as BMP/Smad and Wnt/β-catenin signaling underlying bone formation will be evaluated. This review also prospects innovative approaches, i.e., phage display technology, to optimize marine-derived peptides for targeted bone regeneration. In the context of innovative and sustainable materials, this review suggests some interesting applications of unusual materials able to overcome the limitations of conventional ones and stimulate cellular regeneration of bone tissue by activating specific molecular pathways.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Seed Priming: Molecules and Mechanisms for Enhancing Plant Germination, Growth, and Stress Tolerance.","authors":"Mason T MacDonald, Vijaya R Mohan","doi":"10.3390/cimb47030177","DOIUrl":"10.3390/cimb47030177","url":null,"abstract":"<p><p>Food security is one of the world's top challenges, specifically considering global issues like climate change. Seed priming is one strategy to improve crop production, typically via increased germination, yields, and/or stress tolerance. Hydropriming, or soaking seeds in water only, is the simplest form of seed priming. However, the addition of certain seed priming agents has resulted in a variety of modified strategies, including osmopriming, halopriming, hormonal priming, PGR priming, nutripriming, and others. Most current research has focused on hormonal and nutripriming. This review will focus on the specific compounds that have been used most often over the past 3 years and the physiological effects that they have had on crops. Over half of recent research has focused on four compounds: (1) salicylic acid, (2) zinc, (3) gibberellic acid, and (4) potassium nitrate. One of the most interesting characteristics of all chemical seed priming agents is that they are exposed only to seeds yet confer benefits throughout plant development. In some cases, such benefits have been passed to subsequent generations, suggesting an epigenetic effect, which is supported by observed changes in DNA methylation and histone modification. This review will summarize the current state of knowledge on molecular changes and physiological mechanisms associated with chemical seed priming agents and discuss avenues for future research.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Application and Molecular Mechanisms of Mitochondria-Targeted Antioxidants in Chemotherapy-Induced Cardiac Injury.","authors":"Chih-Jen Liu, Lu-Kai Wang, Fu-Ming Tsai","doi":"10.3390/cimb47030176","DOIUrl":"10.3390/cimb47030176","url":null,"abstract":"<p><p>Chemotherapeutic agents play a crucial role in cancer treatment. However, their use is often associated with significant adverse effects, particularly cardiotoxicity. Drugs such as anthracyclines (e.g., doxorubicin) and platinum-based agents (e.g., cisplatin) cause mitochondrial damage, which is one of the main mechanisms underlying cardiotoxicity. These drugs induce oxidative stress, leading to an increase in reactive oxygen species (ROS), which in turn damage the mitochondria in cardiomyocytes, resulting in impaired cardiac function and heart failure. Mitochondria-targeted antioxidants (MTAs) have emerged as a promising cardioprotective strategy, offering a potential solution. These agents efficiently scavenge ROS within the mitochondria, protecting cardiomyocytes from oxidative damage. Recent studies have shown that MTAs, such as elamipretide, SkQ1, CoQ10, and melatonin, significantly mitigate chemotherapy-induced cardiotoxicity. These antioxidants not only reduce oxidative damage but also help maintain mitochondrial structure and function, stabilize mitochondrial membrane potential, and prevent excessive opening of the mitochondrial permeability transition pore, thus preventing apoptosis and cardiac dysfunction. In this review, we integrate recent findings to elucidate the mechanisms of chemotherapy-induced cardiotoxicity and highlight the substantial therapeutic potential of MTAs in reducing chemotherapy-induced heart damage. These agents are expected to offer safer and more effective treatment options for cancer patients in clinical practice.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Desmodesmus</i> Extract as a Mitochondrion-Targeted Neuroprotective Agent in Parkinson's Disease: An In Vitro Study.","authors":"Muazzez Derya-Andeden, Pinar Altin-Celik, Enver Ersoy Andeden, Hamiyet Donmez-Altuntas","doi":"10.3390/cimb47030174","DOIUrl":"10.3390/cimb47030174","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most common neurodegenerative disease, and its prevalence is expected to double in the next 30 years. Currently, no effective treatment exists for Parkinson's disease. Thus, the research has focused on discovering new natural compounds with strong neuroprotective potential. This study aimed to investigate the effects of the methanol extract of <i>Desmodesmus arthrodesmiformis</i> EM13 (DaMe) on the mitochondrial damage pathway in an in vitro model of PD. The isolate of <i>Desmodesmus arthrodesmiformis</i> EM13 was first grown under appropriate culture conditions, and then the extract (DaMe) was prepared for use in the experiments. The total lipid and protein contents, fatty acid composition, and elemental content of DaMe were subsequently determined. Human SH-SY5Y neuroblastoma cells were pretreated with nontoxic concentrations of DaMe before 6-hydroxydopamine (6-OHDA) toxicity. Pretreatment with DaMe at concentrations of 100, 250, and 500 µg/mL showed a neuroprotective effect on 6-OHDA-induced SH-SY5Y neuroblastoma cells by decreasing the reactive oxygen species (ROS) production, decreasing the total oxidant status (TOS), increasing the total antioxidant capacity (TAC), increasing the mitochondrial membrane potential (ΔΨm), decreasing the oxidative DNA damage, and regulating gene expressions related to PD and apoptosis. Given the results of our study, we suggest that DaMe can be used as a natural source for producing drugs and dietary supplements intended to treat PD.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}