Naling Fan, Teng Guo, Liying Du, Mingfeng Liu, Xinran Chen
{"title":"Pharmacokinetic Interaction between Imatinib and Tacrolimus in Rats.","authors":"Naling Fan, Teng Guo, Liying Du, Mingfeng Liu, Xinran Chen","doi":"10.2174/0113892002319356241210073350","DOIUrl":"https://doi.org/10.2174/0113892002319356241210073350","url":null,"abstract":"<p><strong>Objective: </strong>Tacrolimus, a calcineurin inhibitor (CNI), is the first-line treatment for chronic myeloid leukemia (CML) and advanced gastrointestinal stromal tumors (GIST). Imatinib and tacrolimus are both substrates of the hepatic enzymes CYP3A4/5 and efflux transporter P-gp, so drug-drug interactions may occur during their co-administration treatment. Therefore, this study aimed to evaluate the pharmacokinetic interaction between imatinib and tacrolimus in rats.</p><p><strong>Methods: </strong>Rats were divided into groups I (30 mg/kg imatinib administered for 14 days), II (1.89 mg/kg tacrolimus and 30 mg/kg imatinib administered for 14 days), III (30mg/kg imatinib and 0.63mg/kg tacrolimus administered for 14 days), IV (1.89mg/kg tacrolimus for 14 days), and V (10mg/kg imatinib and 1.89mg/kg tacrolimus for 14 days). Blood samples were determined for whole blood of tacrolimus, plasma of imatinib, and Ndesmethyl imatinib concentrations using ultra-performance liquid chromatography-mass spectrometry.</p><p><strong>Results: </strong>After 1 day of a single dose, tacrolimus had no significant effect on the pharmacokinetics of imatinib and N-desmethyl imatinib; imatinib significantly increased the AUC and Cmax of tacrolimus (P < 0.05). After 14 days of multiple doses, tacrolimus significantly reduced the AUC and Cmax of imatinib and N-desmethyl imatinib (P < 0.05). Further, imatinib significantly increased AUC0-24 and AUC0-∞ of tacrolimus (P < 0.05).</p><p><strong>Conclusion: </strong>Imatinib increased tacrolimus blood concentrations after single and multiple administrations. Tacrolimus did not significantly affect the pharmacokinetics of imatinib after a single dose; however, tacrolimus might impact the absorption and metabolism of imatinib after multiple doses. The results showed that when imatinib and tacrolimus were co-administered, attention should be paid to the presence of drug-drug interactions.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianqi Zhong, Kaizong Huang, LuYao Han, Wenbo Pang, Yan Xia, Shengjun Qu, Guo Yu, Yangsheng Chen, Hongwei Fan
{"title":"Characterizing Pharmacokinetic Variability of Topiroxostat in Chinese Population: Insights from a Phase I Randomized Clinical Trial.","authors":"Tianqi Zhong, Kaizong Huang, LuYao Han, Wenbo Pang, Yan Xia, Shengjun Qu, Guo Yu, Yangsheng Chen, Hongwei Fan","doi":"10.2174/0113892002348045241210071452","DOIUrl":"https://doi.org/10.2174/0113892002348045241210071452","url":null,"abstract":"<p><strong>Objective: </strong>This Phase I clinical trial aimed to address the knowledge gap regarding topiroxostat's use outside Japan by characterizing its pharmacokinetic profile, safety, and efficacy in healthy Chinese subjects.</p><p><strong>Methods: </strong>The trial followed a randomized, open-label, three-dose group design, enrolling 12 healthy participants and administering topiroxostat at three different dose levels. The study utilized NONMEM software for pharmacokinetic analysis, evaluating the impact of demographic and biochemical covariates on drug disposition.</p><p><strong>Results: </strong>Pharmacokinetic analysis shows the peak drug concentration (Cmax) under a single oral administration of 20, 40, and 80 mg of Topiroxostat, which was found in healthy subjects to be 215.46 ± 94.04 ng/mL, 473.74 ± 319.83 ng/mL and 1009.63 ± 585.98 ng/mL, respectively. The time to peak drug concentration (Tmax) was longer in females (0.79-0.98 h) than in males (0.53-0.93 h). Activated partial thromboplastin time (APTT) and triglycerides (TG) were included as covariates for the typical value of the absorption rate constant (TVKA) in our pharmacokinetic model. The dose (DOSE) was considered a covariate for the typical value of bioavailability (TVF1), and sex (SEX) was considered a covariate for the typical value of clearance (TVCL). The typical population values for topiroxostat included Q/F at 4.91 L/h, KA at 0.657 h-¹, Vc/F at 32.5 L, Vp/F at 30 L, and CL/F at 124 L/h.</p><p><strong>Conclusion: </strong>The trial successfully established the pharmacokinetic parameters of topiroxostat in a Chinese population, confirming its safety and efficacy. The results support the need for individualized dosing strategies and optimize therapeutic outcomes.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clinical Pharmacology and Side Effects of Venetoclax in Hematologic Malignancies.","authors":"Yuting Yan, Yujiao Guo, Ziyi Wang, Wei He, Yu Zhu, Xiaoli Zhao, Luning Sun, Yongqing Wang","doi":"10.2174/0113892002338926241114080504","DOIUrl":"https://doi.org/10.2174/0113892002338926241114080504","url":null,"abstract":"<p><p>Venetoclax is a first-in-class B-cell lymphoma/lymphoma-2 (BCL-2) inhibitor that induces apoptosis in malignant cells through the inhibition of BCL-2. The clinical response to venetoclax exhibits heterogeneity, and its sensitivity and resistance may be intricately linked to genetic expression. Pharmacokinetic studies following doses of venetoclax (ranging from 100 to 1200mg) revealed a time to maximum observed plasma concentration of 5-8 hours, with a maximum blood concentration of 1.58-3.89 μg/mL, and a 24-hour area under the concentration-time curve of 12.7-62.8 μg·h/mL. Population-based pharmacokinetic investigations highlighted that factors such as low-fat diet, race, and severe hepatic impairment play pivotal roles in influencing venetoclax dose selection. Being a substrate for CYP3A4, P-glycoprotein, and breast cancer resistance protein, venetoclax undergoes primary metabolism and clearance in the liver, displaying low accumulation in the body.The significance of dose modifications (a 50% decrease with moderate and a 75% reduction with strong CYP3A inhibitors) and a cautious two-hour interval when co-administered with P-glycoprotein inhibitors are highlighted by insights from clinical medication interaction studies. Moreover, an exposure-response relationship analysis indicates that venetoclax exposure significantly correlates not only with overall survival and total response rate but also with the occurrence of ≥ 3-grade neutropenia. In real-world studies, common or severe side effects of venetoclax include tumor lysis syndrome, myelosuppression, nausea, diarrhea, constipation, infection, autoimmune hemolytic anemia, and cardiac toxicity, among others. In this review, we summarize the current clinical pharmacology studies and side effects of venetoclax, which showed that the approved dosage of venetoclax is relatively wide, and the dosage for different hematologic populations can be streamlined in the future.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Bai, Huizi Ouyang, Yang Liu, Fanjiao Zuo, Caixia Li, Shuting Zhou, Yanxu Chang, Jun He
{"title":"Application of UPLC-MS/MS to Study Cellular Pharmacokinetics of Seven Active Components of Cnidii Fructus Extracts.","authors":"Yu Bai, Huizi Ouyang, Yang Liu, Fanjiao Zuo, Caixia Li, Shuting Zhou, Yanxu Chang, Jun He","doi":"10.2174/0113892002301262241107065717","DOIUrl":"10.2174/0113892002301262241107065717","url":null,"abstract":"<p><strong>Background: </strong>Cnidii Fructus (CF) is a herbal medicine with pharmacological activities such as antitumor, antiviral, antiallergic, antipruritic effects, and so on.</p><p><strong>Objective: </strong>In this study, an ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC- MS/MS) method was prepared and verified to measure the concentrations of seven analytes (bergapten, xanthotoxol, xanthotoxin, imperatorin, osthole, isopimpinellin, isoimperatorin) in HepG2 cells.</p><p><strong>Methods: </strong>The separation of seven analytes was performed on an ACQUITY UPLC® BEH C18 column (2.1×100 mm, 1.7 μm) with a gradient mobile phase system of 0.1% formic acid/water and acetonitrile.</p><p><strong>Results: </strong>The CV of analytes was within 7.77%, and the bias was in the range of -5.43%-3.84%. The matrix effects of analytes ranged from 92.95% to 104.58%, and the extraction recoveries ranged from 76.45% to 104.69%. The relative standard deviation of stability results was less than 8.21%, indicating that seven analytes were stable.</p><p><strong>Conclusion: </strong>The method was successfully applied to the determination of the content of seven analytes of CF extracts by UPLC-MS/MS, and the results will provide a reference for the cellular pharmacokinetics of CF.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the Interplay: Antioxidant Enzyme Polymorphisms and Oxidative Stress in Preterm Neonatal Renal and Hepatic Functions.","authors":"Kannan Sridharan, Mona Al Jufairi","doi":"10.2174/0113892002328584240923095216","DOIUrl":"https://doi.org/10.2174/0113892002328584240923095216","url":null,"abstract":"<p><strong>Aims: </strong>To explore the relationship between oxidative stress biomarkers and the occurrence of acute kidney injury (AKI) alongside notable liver function disturbances in preterm neonates.</p><p><strong>Background: </strong>Given the immaturity of kidneys and incomplete liver development in preterm neonates, oxidative stress poses a considerable threat to their renal and hepatic health.</p><p><strong>Objective: </strong>To find out the association between various oxidative stress biomarkers and polymorphisms of antioxidant enzymes with renal and live functions.</p><p><strong>Methods: </strong>In this cross-sectional study, we gathered umbilical cord blood and peripheral blood samples for assessing oxidative stress biomarkers and identifying single nucleotide polymorphisms (SNPs) in antioxidant enzymes. Utilizing enzyme-linked immunosorbent assay kits, we quantified these oxidative stress biomarkers. Receiver-operating characteristics curve analysis was employed to ascertain the predictive capacity of these biomarkers, denoted by the area-under-the-curve (AUC).</p><p><strong>Results: </strong>Our findings revealed that umbilical cord heat-shock proteins emerged as robust predictors of neonatal AKI (AUC: 0.92; 95% CI: 0.8-1) with a defined cut-off concentration of 1.8 ng/mL. Likewise, umbilical cord 8-hydroxy-2-deoxy guanosine demonstrated significant predictability for liver function alterations (AUC: 0.7; 95% CI: 0.6-0.9) at a cut-off concentration of 2487.6 pg/mL.</p><p><strong>Conclusions: </strong>We observed significant associations between SNPs in endothelial nitric oxide synthase and catalase with both AKI and impaired liver functions. Prospective studies are warranted to validate these findings, with a particular focus on exploring potential antioxidant interventions aimed at mitigating AKI and liver function abnormalities.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic Stability and Metabolite Identification of CYP450 Probe Substrates in Ferret Hepatocytes","authors":"Jiang Pu, Wanyong Feng","doi":"10.2174/0113892002302675240903075500","DOIUrl":"https://doi.org/10.2174/0113892002302675240903075500","url":null,"abstract":"Background: Ferrets exhibit similar lung physiology to humans and display similar clinical signs following influenza infection, making them a valuable model for studying high susceptibility and infection patterns. However, the metabolic fate of several common human CYP450 probe substrates in ferrets is still unknown and has not been studied. Objective: The purpose of this study was to investigate the metabolism of nine human CYP450 probe substrates in ferret hepatocytes and explore their metabolic rate differences between ferrets and other species. Method: Nine substrates were individually incubated in ferret hepatocytes for up to 120 min. At each time point, 30 μL mixtures were extracted for stability analysis using LC-MS/MS methods. After a 120-minute incubation period, 400 μL of the mixtures were extracted for metabolite identification using UHPLC-QExactive Plus. Results: The metabolic clearance was determined as follows: diclofenac > taxol > chlorzoxazone > dextromethorphan > midazolam > omeprazole > bupropion > phenacetin > testosterone. Seven metabolites were identified from phenacetin. Deethylation was found to be the major pathway, and the major metabolite was matched with acetaminophen as probed with the CYP1A2 enzyme. Six metabolites were identified from diclofenac. Glucuronidation was the primary pathway, and a metabolite was found to match 4-OH-diclofenac as probed with the CYP2C9 enzyme. Twenty-two metabolites were identified from omeprazole. The major metabolic pathways included mono-oxygenation and sulfoxide to thioether conversion. No metabolite was found to match with the 5-OH-omeprazole as probed with the CYP2C19 enzyme. Twenty-two metabolites were identified from dextromethorphan. Demethylation was found to be the major metabolic pathway, and one demethylation metabolite was matched with dextrorphan as probed with CYP2D6. Fourteen metabolites were identified from midazolam. Mono-oxygenation was found to be the primary metabolic pathway, and one of the mono-oxygenation metabolites was matched with 1-OH-midazolam as probed with the CYP3A4 enzyme. Eight metabolites were identified from testosterone. Mono-oxygenation and glucuronidation were identified as the major metabolic pathways. One mono-oxygenation was matched with 6-β-testosterone as probed with CYP3A4 enzyme. Six metabolites were identified from taxol. Hydrolysis and mono-oxygenation were the top two metabolic pathways. No metabolite was matched with 6-α-OH-taxol as probed with the CYP2C8 enzyme. Ten metabolites were identified from bupropion. Mono-oxygenation and hydrogenation were identified as the top two metabolic pathways. No mono-oxygenation metabolite was matched with hydroxy-bupropion as probed with the CYP2B6 enzyme. Nine metabolites were identified from chlorzoxazone. Monooxygenation and sulfation were the top two metabolic pathways. One mono-oxygenation metabolite was matched with 6-OH-chlorzoxazone as probed with the CYP2E1 enzyme. Concl","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"13 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quality by Design-Steered Development of Stealth Liposomal Formulation of Everolimus: A Systematic Optimization and Evaluation","authors":"Simranjeet Kaur, Rajveer Sidhu, Dilpreet Singh","doi":"10.2174/0113892002322171240821104152","DOIUrl":"https://doi.org/10.2174/0113892002322171240821104152","url":null,"abstract":"Background: Everolimus is a drug approved for the treatment of breast cancer with HR+ and advanced breast cancer reoccurring in postmenopausal women. The oral administration of EVE has been observed to have low oral bioavailability and severe epithelial cutaneous events that include rashes and lip ulceration followed by mouth ulceration after oral administration. Aim: The present research aimed to enhance the bioavailability by loading the EVE into a stealth liposomal formulation (S-EVE-LIPO) intended for intravenous administration. Methods: The surface of the liposomes was modified with vitamin E TPGS, which prolongs the systemic circulation of the drug and provides additional benefits like inhibition of the P-gp efflux pump and acting synergistically with EVE. Results: The formulation was prepared using the thin film hydration method and optimized using a D-optimal mixture design. ANOVA suggested the significance of the proposed mathematic model, and the optimized formulation was generated by design expert software. The optimized formulation (S-EVE-LIPO) was observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86 %). The S-EVELIPO formulation indicated a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) released only 74.15 drugs in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS, and shows better hemocompatibility. result: The formulation was prepared by thin film hydration method and optimized by D-optimal mixture design. ANOVA suggested significancy of the proposed mathematic model and optimized formulation was generated by design expert software The optimized formulation (S-EVE-LIPO) has observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86 %). The S-EVE-LIPO formulation indicated with a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) releases only 74.15 drug in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS and shows better hemocompatibility. Conclusion: Vitamin E TPGS could be set as a vital additive to improve therapeutic efficacy and reduce offsite toxicity and dosing frequency.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"37 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WITHDRAWN: Pharmacokinetic Drug Interactions of Piperine: A Review of Pre-clinical and Clinical Studies","authors":"Imtiyaz Ahmed Najar, Sagar Pamu, Anushka Paul, Poonam Arora, Gaganjit Kaur, Manish Kumar","doi":"10.2174/0113892002302273240607055945","DOIUrl":"10.2174/0113892002302273240607055945","url":null,"abstract":"<p><p>The article has been withdrawn at the request of the author and the editor of the journal Current Drug Metabolism.</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham editorial policy on article withdrawal can be found at https://benthamscience.com/editorial-policiesmain.php</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously\u0000submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere\u0000must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting\u0000the article for publication, the authors agree that the publishers have the legal right to take appropriate action against the\u0000authors if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright\u0000of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi-Rong Wang, Meng-Ting Zuo, Wen-Bo Xu, Zhao-Ying Liu
{"title":"Comparative Analysis of the Gelsemium Alkaloids Metabolism in Human, Pig, Goat, and Rat Liver Microsomes","authors":"Yi-Rong Wang, Meng-Ting Zuo, Wen-Bo Xu, Zhao-Ying Liu","doi":"10.2174/0113892002298633240322071126","DOIUrl":"https://doi.org/10.2174/0113892002298633240322071126","url":null,"abstract":"Aim: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. Methods: A human, goat, pig and rat liver microparticles were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. Results: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. Conclusion: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application. result: 46 natural products were characterized from alcohol extract of Gelsemium elegan and 13 metabolites were identified. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. all 13 metabolites were detected in pig and rat, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"107 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulation of Gut Microbiota by Herbal Medicines","authors":"Yogita Shinde, Gitanjali Deokar","doi":"10.2174/0113892002287336240328083220","DOIUrl":"https://doi.org/10.2174/0113892002287336240328083220","url":null,"abstract":": Preserving host health and homeostasis is largely dependent on the human gut microbiome, a varied and ever-changing population of bacteria living in the gastrointestinal tract. This article aims to explore the multifaceted functions of the gut microbiome and shed light on the evolving field of research investigating the impact of herbal medicines on both the composition and functionality of the gut microbiome. Through a comprehensive overview, we aim to provide insights into the intricate relationship between herbal remedies and the gut microbiome, fostering a better understanding of their potential implications for human health.The gut microbiota is composed of trillions of microorganisms, predominantly bacteria, but also viruses, fungi, and archaea. It functions as a complex ecosystem that interacts with the host in various ways. It aids in nutrient metabolism, modulates the immune system, provides protection against pathogens, and influences host physiology. Moreover, it has been linked to a range of health outcomes, including digestion, metabolic health, and even mental well-being. Recent research has shed light on the potential of herbal medicines to modulate the gut microbiome. Herbal medicines, derived from plants and often used in traditional medicine systems, contain a diverse array of phytochemicals, which can directly or indirectly impact gut microbial composition. These phytochemicals can either act as prebiotics, promoting the growth of beneficial bacteria, or possess antimicrobial properties, targeting harmful pathogens. Several studies have demonstrated the effects of specific herbal medicines on the gut microbiome. For example, extracts from herbs have been shown to enhance the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while reducing potentially harmful microbes. Moreover, herbal medicines have exhibited promising antimicrobial effects against certain pathogenic bacteria. The modulation of the gut microbiome by herbal medicines has potential therapeutic implications. Research suggests herbal interventions could be harnessed to alleviate gastrointestinal disorders, support immune function, and even impact metabolic health. However, it is important to note that individual responses to herbal treatments can vary due to genetics, diet, and baseline microbiome composition.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"30 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}