Current drug metabolism最新文献

筛选
英文 中文
Hydrogen Peroxide Induces Ethanol-inducible CYP2E1 via the NFkB-classical Pathway: CYP2E1 mRNA Levels are not High in Alcoholic Hepatitis. 过氧化氢通过 NFkB 经典途径诱导乙醇诱导型 CYP2E1:酒精性肝炎的 CYP2E1 mRNA 水平并不高。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-08-08 DOI: 10.2174/0113892002305174240805064406
Akiyoshi Tamura, Ferbian Milas Siswanto, Takumi Yoshimura, Ami Oguro, Susumu Imaoka
{"title":"Hydrogen Peroxide Induces Ethanol-inducible CYP2E1 via the NFkB-classical Pathway: CYP2E1 mRNA Levels are not High in Alcoholic Hepatitis.","authors":"Akiyoshi Tamura, Ferbian Milas Siswanto, Takumi Yoshimura, Ami Oguro, Susumu Imaoka","doi":"10.2174/0113892002305174240805064406","DOIUrl":"https://doi.org/10.2174/0113892002305174240805064406","url":null,"abstract":"<p><strong>Aims: </strong>The aim of the present study is to elucidate the mechanism of CYP2E1 induction as a causative factor of alcoholic hepatitis (AH) and its relationship with inflammation.</p><p><strong>Background: </strong>Chronic alcohol consumption induces CYP2E1, which is involved in the development of alcoholic hepatitis (AH). However, the mechanisms underlying the induction of CYP2E1 by alcohol remain unclear. Therefore, we herein investigated the induction of drug-metabolizing enzymes, particularly CYP2E1, by hydrogen peroxide (H2O2), the concentration of which is elevated under inflammatory conditions.</p><p><strong>Objective: </strong>The mechanisms underlying the induction of CYP2E1 by H2O2 were examined with a focus on Keap1, a target factor of H2O2.</p><p><strong>Methods: </strong>We assessed changes in the expression of drug-metabolizing enzymes in the human hepatoma cell line, Hep3B, following treatment with H2O2, and evaluated changes in the expression of the NFkB-related factor RelA(p65) after the knockdown of Keap1, a regulator of Nrf2 expression by reactive oxygen species. We also performed a promoter analysis using the upstream region of the CYP2E1 gene. We herein used the GSE89632 series for non-alcoholic hepatitis (NASH) and the GSE28619 series for AH.</p><p><strong>Results: </strong>The induction of CYP2E1 by H2O2 was significantly stronger than that of other drugmetabolizing enzymes. On the other hand, the knockdown of Keap1, a target of H2O2, markedly increased RelA(p65), an NFkB factor. Furthermore, the overexpression of RelA(p65) strongly induced the expression of CYP2E1. Four candidate p65-binding sequences were identified upstream of the CYP2E1 gene, and promoter activity assays showed that the third sequence was responsive to the overexpression of RelA(p65). We used the GSE89632 series for NASH and the GSE28619 series for AH in the present study. The expression of CYP2E1 mRNA in the liver was significantly lower in AH patients than in HC patients, but was similar in HC patients and NASH patients.</p><p><strong>Conclusion: </strong>We herein demonstrated that the expression of CYP2E1 was induced by H2O2. The overexpression of RelA(p65) also induced CYP2E1 mRNA expression, whereas H2O2 did not after the knockdown of RelA. These results suggest that H2O2 acts on Keap1 to upregulate RelA (p65) in the NFkB system. One of the mechanisms underlying the induction of CYP2E1 was dependent on the H2O2-Keap1-RelA axis. The results of the database analysis revealed that the expression of CYP2E1 in the liver was significantly lower in AHH patients than in NASH patients, suggesting that CYP2E1 is not the main cause of AH; however, CYP2E1 may exacerbate the pathogenesis of AH.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: In-Vitro Studies and Literature Review. 基于羧酸酯酶 1 的雷马唑仑药物相互作用潜力:体外研究和文献综述。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-08-06 DOI: 10.2174/0113892002308233240801104910
Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stöhr
{"title":"Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: In-Vitro Studies and Literature Review.","authors":"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stöhr","doi":"10.2174/0113892002308233240801104910","DOIUrl":"https://doi.org/10.2174/0113892002308233240801104910","url":null,"abstract":"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.</p><p><strong>Methods: </strong>Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible in-vivo inhibition using pharmacokinetic and Ki or IC50 values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.</p><p><strong>Results: </strong>In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC50 values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam via CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible in-vivo inhibitors of remimazolam metabolism.</p><p><strong>Conclusion: </strong>Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of P-glycoprotein in Regulating the Efficacy, Toxicity and Pharmacokinetics of Yunaconitine. P 糖蛋白在调节 Yunaconitine 的药效、毒性和药代动力学中的作用
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-08-06 DOI: 10.2174/0113892002302427240801072910
Xiaocui Li, Qi Liang, Caiyan Wang, Huawei Qiu, Tingting Lin, Wentao Li, Rong Zhang, Zhongqiu Liu, Lijun Zhu
{"title":"Role of P-glycoprotein in Regulating the Efficacy, Toxicity and Pharmacokinetics of Yunaconitine.","authors":"Xiaocui Li, Qi Liang, Caiyan Wang, Huawei Qiu, Tingting Lin, Wentao Li, Rong Zhang, Zhongqiu Liu, Lijun Zhu","doi":"10.2174/0113892002302427240801072910","DOIUrl":"https://doi.org/10.2174/0113892002302427240801072910","url":null,"abstract":"<p><strong>Background: </strong>Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing Aconitum species; however, its underlying mechanism remains unclear.</p><p><strong>Objective: </strong>The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC.</p><p><strong>Methods: </strong>The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined via male Mdr1a gene knocked-out mice and wild-type FVB mice.</p><p><strong>Results: </strong>The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco- 2 monolayers (P < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in Mdr1a-/- mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice (P < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD50) of YAC from 2.13 to 0.24 mg/kg (P < 0.05). Moreover, the concentrations of YAC in the tissues of Mdr1a-/- mice were statistically higher than those in wild-type FVB mice (P < 0.05). Particularly, the brain accumulation of YAC in Mdr1a-/- mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice (P < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between Mdr1a-/- and wild-type FVB mice.</p><p><strong>Conclusion: </strong>YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Nanoscale Drug Delivery Strategies for Breast Carcinoma: A Comprehensive Exploration. 乳腺癌的创新纳米级给药策略:全面探索。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-08-06 DOI: 10.2174/0113892002298034240802110752
Jaishree S, Kousalya Selvaraj, Prakash S, Vineesh D
{"title":"Innovative Nanoscale Drug Delivery Strategies for Breast Carcinoma: A Comprehensive Exploration.","authors":"Jaishree S, Kousalya Selvaraj, Prakash S, Vineesh D","doi":"10.2174/0113892002298034240802110752","DOIUrl":"https://doi.org/10.2174/0113892002298034240802110752","url":null,"abstract":"<p><p>Breast cancer (BC) is one of the major causes of poor health in women and the most devastating disease after lung cancer. The term \"cancer\" refers to a collection of problems resulting from abnormal cell proliferation, particularly cells that can spread to other parts of the body. Surgery, followed by chemotherapy or radiotherapy, is now accepted for BC-related cancers. However, chemotherapy and radiotherapy are rarely effective in the treatment of BC due to the adverse effects of these treatments on healthy tissues and organs. Consequently, the use of NPs in targeted Drug Delivery Systems (DDSs) has emerged as a promising strategy for BC treatment. This review provides a summary of recent clinical investigations of nanoparticle-mediated DDS that offer a novel therapeutic strategy commonly used for the treatment of breast cancer.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment. 用于 2 型糖尿病治疗的新型先导药物的蛋白质-药物相互作用预测、药理模型和毒代动力学。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-08-06 DOI: 10.2174/0113892002321919240801065905
Anuradha Mehra, Amit Mittal, Prakhar Kumar Vishwakarma
{"title":"Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment.","authors":"Anuradha Mehra, Amit Mittal, Prakhar Kumar Vishwakarma","doi":"10.2174/0113892002321919240801065905","DOIUrl":"https://doi.org/10.2174/0113892002321919240801065905","url":null,"abstract":"<p><strong>Background: </strong>Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives.</p><p><strong>Objective: </strong>The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes.</p><p><strong>Methods: </strong>Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity.</p><p><strong>Results: </strong>Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity.</p><p><strong>Conclusion: </strong>Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its hi","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism. 高海拔缺氧对镇静催眠药物代谢和药代动力学的影响及调节机制。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-08-06 DOI: 10.2174/0113892002318723240802100729
Lu Tian, Guiqin Liu, Junjun Han, Xiangyang Li
{"title":"Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism.","authors":"Lu Tian, Guiqin Liu, Junjun Han, Xiangyang Li","doi":"10.2174/0113892002318723240802100729","DOIUrl":"10.2174/0113892002318723240802100729","url":null,"abstract":"<p><p>Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of high-altitude hypoxia on sleep.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Integrated Strategy for Comprehensive Metabolite Profiling of Sakurasosaponin from Aegiceras corniculatum in Rats. 大鼠体内 Aegiceras corniculatum Sakurasosaponin 全面代谢物谱分析的高效综合策略
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-08-06 DOI: 10.2174/0113892002299923240801092101
Xiangying Wang, Xiao Yang, Erwei Hao, Jinling Xie, Zhengcai Du, Jiagang Deng, Xiaotao Hou, Wei Wei
{"title":"An Efficient Integrated Strategy for Comprehensive Metabolite Profiling of Sakurasosaponin from Aegiceras corniculatum in Rats.","authors":"Xiangying Wang, Xiao Yang, Erwei Hao, Jinling Xie, Zhengcai Du, Jiagang Deng, Xiaotao Hou, Wei Wei","doi":"10.2174/0113892002299923240801092101","DOIUrl":"https://doi.org/10.2174/0113892002299923240801092101","url":null,"abstract":"<p><strong>Objective: </strong>Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis.</p><p><strong>Methods: </strong>Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed.</p><p><strong>Results: </strong>In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo.</p><p><strong>Conclusion: </strong>The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Cytochrome P450 Metabolic Profile of Paclitaxel on Rats using QTOF-MS. 利用 QTOF-MS 研究紫杉醇在大鼠体内的细胞色素 P450 代谢概况
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-07-19 DOI: 10.2174/0113892002308509240711100502
Zhaoyang Meng, Junjun Chen, Lingyan Xu, Xiao Xiao, Ling Zong, Yonglong Han, Bo Jiang
{"title":"Study on Cytochrome P450 Metabolic Profile of Paclitaxel on Rats using QTOF-MS.","authors":"Zhaoyang Meng, Junjun Chen, Lingyan Xu, Xiao Xiao, Ling Zong, Yonglong Han, Bo Jiang","doi":"10.2174/0113892002308509240711100502","DOIUrl":"https://doi.org/10.2174/0113892002308509240711100502","url":null,"abstract":"<p><strong>Background: </strong>Paclitaxel (PTX) is a key drug used for chemotherapy for various cancers. The hy-droxylation metabolites of paclitaxel are different between humans and rats. Currently, there is little infor-mation available on the metabolic profiles of CYP450 enzymes in rats.</p><p><strong>Objective: </strong>This study evaluated the dynamic metabolic profiles of PTX and its metabolites in rats and in vitro.</p><p><strong>Methods: </strong>Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrome-try (UHPLC-Q-TOF-MS) and LC-MS/MS were applied to qualitative and quantitative analysis of PTX and its metabolites in rats' liver microsomes and recombinant enzyme CYP3A1/3A2. Ten specific inhibitors [NF (CYP1A1), FFL (CYP1A2), MOP (CYP2A6), OND (CYP2B6), QCT (CYP2C8), SFP (CYP2C9), NKT (CYP2C19), QND (CYP2D6), MPZ (CYP2E1) and KTZ (CYP3A4)] were used to identify the metabolic pathway in vitro.</p><p><strong>Results: </strong>Four main hydroxylated metabolites of PTX were identified. Among them, 3'-p-OH PTX and 2-OH PTX were monohydroxylated metabolites identified in rats and liver microsome samples, and 6α-2-di-OH PTX and 6α-5\"-di-OH PTX were dihydroxylated metabolites identified in rats. CYP3A recombinant enzyme studies showed that the CYP3A1/3A2 in rat liver microsomes was mainly responsible for metabolizing PTX into 3'-p-OH-PTX and 2-OH-PTX. However, 6α-OH PTX was not detected in rat plasma and liver microsome samples.</p><p><strong>Conclusion: </strong>The results indicated that the CYP3A1/3A2 enzyme, metabolizing PTX into 3'-p-OH-PTX and 2-OH-PTX, is responsible for the metabolic of PTX in rats. The CYP2C8 metabolite 6α-OH PTX in humans was not detected in rat plasma in this study, which might account for the interspecies metabolic differences between rats and humans. This study will provide evidence for drug-drug interaction research in rats.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isopsoralen Improves Glucocorticoid-induced Osteoporosis by Regulating Purine Metabolism and Promoting cGMP/PKG Pathway-mediated Osteoblast Differentiation. 异补骨脂素通过调节嘌呤代谢和促进 cGMP/PKG 通路介导的成骨细胞分化改善糖皮质激素诱导的骨质疏松症
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-07-12 DOI: 10.2174/0113892002308141240628071541
Defeng Liu, Lingyun Ma, Jihui Zheng, Zhenqun Zhang, Nana Zhang, Zhongqian Han, Xuejie Wang, Jianyong Zhao, Shuquan Lv, Huantian Cui
{"title":"Isopsoralen Improves Glucocorticoid-induced Osteoporosis by Regulating Purine Metabolism and Promoting cGMP/PKG Pathway-mediated Osteoblast Differentiation.","authors":"Defeng Liu, Lingyun Ma, Jihui Zheng, Zhenqun Zhang, Nana Zhang, Zhongqian Han, Xuejie Wang, Jianyong Zhao, Shuquan Lv, Huantian Cui","doi":"10.2174/0113892002308141240628071541","DOIUrl":"https://doi.org/10.2174/0113892002308141240628071541","url":null,"abstract":"<p><strong>Background: </strong>The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear.</p><p><strong>Methods: </strong>This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation.</p><p><strong>Results: </strong>Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity.</p><p><strong>Conclusion: </strong>In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UPLC-LTQ-Orbitrap Study on Rat Urinary Metabolites of 5-Methoxy-Alpha-Methyltryptamine. 大鼠尿液中 5-甲氧基-Alpha-甲基色胺代谢物的 UPLC-LTQ-Orbitrap 研究
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-07-12 DOI: 10.2174/0113892002295551240628061732
Zhutao Guo, Keran Ding, Shuiqing Zheng, Chunfang Ni, Siyang He, Qianya Deng, Chen Liang
{"title":"UPLC-LTQ-Orbitrap Study on Rat Urinary Metabolites of 5-Methoxy-Alpha-Methyltryptamine.","authors":"Zhutao Guo, Keran Ding, Shuiqing Zheng, Chunfang Ni, Siyang He, Qianya Deng, Chen Liang","doi":"10.2174/0113892002295551240628061732","DOIUrl":"https://doi.org/10.2174/0113892002295551240628061732","url":null,"abstract":"<p><strong>Objective: </strong>5-Methoxy-α-Methyltryptamine (5-MeO-AMT) is a new psychoactive substance which is abused due to its hallucinogenic and euphoric effects. This study aimed to study the metabolic characteristics of 5-MeO-AMT.</p><p><strong>Methods: </strong>Five rats were given intraperitoneal injection at a dose of 50 mg/kg of 5-MeO-AMT, and their urine was subsequently collected at different times within 7 days. Ultra-high performance liquid chromatography-- tandem high-resolution mass spectrometry (UPLC-LTQ-Orbitrap) was used to detect the precise molecular weight and fragment ions of 5-MeO-AMT and its possible metabolites in the urine sample extracted with benzene-ethyl acetate.</p><p><strong>Results: </strong>Three metabolites, including OH-5-MeO-AMT, α-Me-5-HT, and N-Acetyl-5-MeO-AMT were identified in rats' urine. The major metabolic pathways involved O-demethylation, hydroxylation of indole ring, and Acetylation on aliphatic amines.</p><p><strong>Conclusion: </strong>The results of this study are an important reference for the identification and screening of toxicants of 5-MeO-AMT.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信