Narahari N Palei, Arghya K Dhar, Jayaraman Rajangam, Dharani Prasad P, Biswa Mohan Sahoo
{"title":"Influence of Orange Oil on Skin Permeability, Dermatokinetics, and In Vivo Anti-inflammatory Properties of Lornoxicam-loaded Niosomal Gel.","authors":"Narahari N Palei, Arghya K Dhar, Jayaraman Rajangam, Dharani Prasad P, Biswa Mohan Sahoo","doi":"10.2174/0113892002368281250630073115","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Lornoxicam is a non-steroidal anti-inflammatory drug belonging to the oxicam class. This study aimed to develop a niosomal gel containing orange oil for improving the anti-inflam-matory effect of lornoxicam.</p><p><strong>Methods: </strong>Lornoxicam-loaded niosomes (LOR-OR-NIO) were prepared using film hydration followed by the sonication method. Particle size, entrapment efficiency, and ex vivo permeation were all consid-ered during the optimization of the niosomal gels by employing the Box-Behnken design. Dermatoki-netics and in vivo anti-inflammatory studies were performed using male Wistar rats.</p><p><strong>Results: </strong>The particle size, entrapment efficiency, and skin permeation ability of the optimized LOR-OR-NIO formulation were found to be 354.3 nm, 83.56 %, and 105.63 μg/cm2, respectively. The ex vivo studies indicated that the optimized LOR-OR-NIO gel demonstrated superior drug penetration properties (105.43 μg/cm2) compared to both the LOR-NIO gel (69.23 μg/cm2) and the LOR gel (35.34 μg/cm2). The activation energy values of LOR gel, LOR-NIO gel, and LOR-OR-NIO gel were 2.74 Kcal mol-1, 1.93 Kcal mol-1, and 0.94 Kcal mol-1, respectively.</p><p><strong>Discussion: </strong>The lower activation energy of the LOR-OR-NIO gel contributed to more skin penetration of the drug. Dermatokinetics investigation demonstrated that the LOR-OR-NIO gel had superior pene-tration in the epidermal and dermal areas compared to the LOR gel. In vivo anti-inflammatory studies indicated that the LOR-OR-NIO gel exhibited greater edema inhibition compared to both the LOR-NIO gel and LOR gel. These results demonstrated the enhanced anti-inflammatory activity of the LOR-OR-NIO gel.</p><p><strong>Conclusion: </strong>The study concluded that orange oil enhanced skin permeability and influenced the derma-tokinetics of the LOR-OR-NIO gel, leading to an improvement in in vivo anti-inflammatory properties..</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002368281250630073115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Lornoxicam is a non-steroidal anti-inflammatory drug belonging to the oxicam class. This study aimed to develop a niosomal gel containing orange oil for improving the anti-inflam-matory effect of lornoxicam.
Methods: Lornoxicam-loaded niosomes (LOR-OR-NIO) were prepared using film hydration followed by the sonication method. Particle size, entrapment efficiency, and ex vivo permeation were all consid-ered during the optimization of the niosomal gels by employing the Box-Behnken design. Dermatoki-netics and in vivo anti-inflammatory studies were performed using male Wistar rats.
Results: The particle size, entrapment efficiency, and skin permeation ability of the optimized LOR-OR-NIO formulation were found to be 354.3 nm, 83.56 %, and 105.63 μg/cm2, respectively. The ex vivo studies indicated that the optimized LOR-OR-NIO gel demonstrated superior drug penetration properties (105.43 μg/cm2) compared to both the LOR-NIO gel (69.23 μg/cm2) and the LOR gel (35.34 μg/cm2). The activation energy values of LOR gel, LOR-NIO gel, and LOR-OR-NIO gel were 2.74 Kcal mol-1, 1.93 Kcal mol-1, and 0.94 Kcal mol-1, respectively.
Discussion: The lower activation energy of the LOR-OR-NIO gel contributed to more skin penetration of the drug. Dermatokinetics investigation demonstrated that the LOR-OR-NIO gel had superior pene-tration in the epidermal and dermal areas compared to the LOR gel. In vivo anti-inflammatory studies indicated that the LOR-OR-NIO gel exhibited greater edema inhibition compared to both the LOR-NIO gel and LOR gel. These results demonstrated the enhanced anti-inflammatory activity of the LOR-OR-NIO gel.
Conclusion: The study concluded that orange oil enhanced skin permeability and influenced the derma-tokinetics of the LOR-OR-NIO gel, leading to an improvement in in vivo anti-inflammatory properties..
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.