{"title":"Advances in Controlled Release Formulations for Ocular Diseases: Improving Patient Compliance and Therapeutic Outcomes.","authors":"Smita Narwal, Dushyant, Gurvirender Singh, Nisha Grewal, Vishal Chanalia, Ashwani K Dhingra","doi":"10.2174/0113892002384586250731104453","DOIUrl":null,"url":null,"abstract":"<p><p>A majority of the global population suffers from eye diseases, but few effective treatment options are available with ophthalmic drug therapies. The reasons that have been identified are (1) lack of awareness about the options for treatments, drugs, polymeric science, or physiological barriers, (2) limitations in bringing drug therapies to the posterior segment of the eye due to physiological or anatomical limitations, and (3) regulatory and production difficulties of ocular drug products. Innovative ocular medication delivery and therapies are covered in this study, including hydrogels, nano micelles, implants, nanoparticles, microparticles, liposomes, in situ gels, and microneedles. Moreover, due to their potential to capture both hydrophilic and lipophilic medications, increase ocular permeability, prolong the period of residence, enhance drug stability, and increase bioavailability, this review includes nanotechnology-based carriers. The research encompassed various eye disorders, obstacles to ocular delivery, multiple ocular administration routes, a range of nanostructured platforms, characterization approaches, methods to improve ocular delivery, and emerging technologies. This review aims to provide information on the anatomy of the eye, various ocular conditions, and obstacles to ocular delivery. The benefits and drawbacks of various ocular dose forms or delivery techniques are also evaluated. Finally, it describes methods for increasing ocular bioavailability.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002384586250731104453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A majority of the global population suffers from eye diseases, but few effective treatment options are available with ophthalmic drug therapies. The reasons that have been identified are (1) lack of awareness about the options for treatments, drugs, polymeric science, or physiological barriers, (2) limitations in bringing drug therapies to the posterior segment of the eye due to physiological or anatomical limitations, and (3) regulatory and production difficulties of ocular drug products. Innovative ocular medication delivery and therapies are covered in this study, including hydrogels, nano micelles, implants, nanoparticles, microparticles, liposomes, in situ gels, and microneedles. Moreover, due to their potential to capture both hydrophilic and lipophilic medications, increase ocular permeability, prolong the period of residence, enhance drug stability, and increase bioavailability, this review includes nanotechnology-based carriers. The research encompassed various eye disorders, obstacles to ocular delivery, multiple ocular administration routes, a range of nanostructured platforms, characterization approaches, methods to improve ocular delivery, and emerging technologies. This review aims to provide information on the anatomy of the eye, various ocular conditions, and obstacles to ocular delivery. The benefits and drawbacks of various ocular dose forms or delivery techniques are also evaluated. Finally, it describes methods for increasing ocular bioavailability.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.