Current drug metabolism最新文献

筛选
英文 中文
Umbelliferone Enhances Immune Function in Cyclophosphamide-Induced Immunosuppressed Mice via Histidine and Purine Metabolism Regulation. 伞草酮通过调节组氨酸和嘌呤代谢增强环磷酰胺诱导免疫抑制小鼠的免疫功能。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002360132250122164637
Mei Li, Jing Wang, Bingjie Huo, Qianqian Wan, Liwei Xing, Yuming Wang, Huan Pei, Li Wang, Yafei Xia, Huantian Cui
{"title":"Umbelliferone Enhances Immune Function in Cyclophosphamide-Induced Immunosuppressed Mice <i>via</i> Histidine and Purine Metabolism Regulation.","authors":"Mei Li, Jing Wang, Bingjie Huo, Qianqian Wan, Liwei Xing, Yuming Wang, Huan Pei, Li Wang, Yafei Xia, Huantian Cui","doi":"10.2174/0113892002360132250122164637","DOIUrl":"10.2174/0113892002360132250122164637","url":null,"abstract":"<p><strong>Background: </strong>Chemotherapy-induced immunosuppression significantly impacts patient's quality of life. Umbelliferone (UMB) is known for its anti-inflammatory, antioxidant, and anti-apoptotic properties, but its effects on cyclophosphamide (CTX)-induced immunosuppression need further study.</p><p><strong>Methods: </strong>We established a CTX-induced immunosuppressed mouse model and administered varying doses of UMB. Immune function was assessed by evaluating white blood cells, lymphocytes, thymus and spleen indices, and CD4<sup>+</sup>/CD8<sup>+</sup> T cell ratios. Serum levels of IL-2, IFN-γ, IgA, IgM, and IgG, along with macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation, were measured. Untargeted metabolomics was used to identify key pathways regulated by UMB, and RT-qPCR and Western blotting were performed to analyze the expression of related enzymes and metabolites.</p><p><strong>Results: </strong>UMB intervention increased white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios in CTX-immunosuppressed mice. It reversed reduced levels of serum IL-2, IFN-γ, IgA, IgM, and IgG and improved macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation. Key pathways identified by metabolomics included histidine and purine metabolism. UMB improved levels of histamine, L-glutamate, L-aspartate, xanthine, dAMP, deoxyinosine, xanthosine, and cGMP and upregulated HDC, ASPA, and PNP while downregulating XDH, PDE5, ROS, and MDA in spleen tissue. UMB enhanced SOD activity and GSH levels and reduced apoptosis, as indicated by lower TUNEL-positive expression.</p><p><strong>Conclusion: </strong>UMB enhanced immune function in CTX-immunosuppressed mice through the regulation of histidine and purine metabolism, exhibiting antioxidant and anti-apoptotic effects. These findings highlight the potential of UMB in mitigating immunosuppression.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"695-705"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disposition Kinetics of Cathinone and its Metabolites after Oral Administration in Rats. 大鼠口服 Cathinone 及其代谢物的处置动力学
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002300638240513065512
Fahad Y Sabei, Ibrahim Khardali, Mohamed A Al-Kasim, Emad Sayed Shaheen, Magbool Oraiby, Ahmad Alamir, Banji David, Saeed Alshahrani, Abdulmajeed M Jali, Mohammed Attafi, Mohammed Y Albeishy, Ibraheem Attafi
{"title":"Disposition Kinetics of Cathinone and its Metabolites after Oral Administration in Rats.","authors":"Fahad Y Sabei, Ibrahim Khardali, Mohamed A Al-Kasim, Emad Sayed Shaheen, Magbool Oraiby, Ahmad Alamir, Banji David, Saeed Alshahrani, Abdulmajeed M Jali, Mohammed Attafi, Mohammed Y Albeishy, Ibraheem Attafi","doi":"10.2174/0113892002300638240513065512","DOIUrl":"10.2174/0113892002300638240513065512","url":null,"abstract":"<p><strong>Background: </strong>Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited.</p><p><strong>Objective: </strong>This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats.</p><p><strong>Methods: </strong>Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method.</p><p><strong>Results: </strong>The highest concentration of cathinone was found in the kidney (1438.6 μg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 μg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 μg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 μg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum.</p><p><strong>Conclusion: </strong>This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"220-226"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of UGT1A Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients. 肾移植受者 UGT1A 基因多态性与 BKV 感染的关系
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002282727240307072255
Jingwen Yuan, Shuang Fei, Zeping Gui, Zijie Wang, Hao Chen, Li Sun, Jun Tao, Zhijian Han, Xiaobing Ju, Ruoyun Tan, Min Gu, Zhengkai Huang
{"title":"Association of <i>UGT1A</i> Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients.","authors":"Jingwen Yuan, Shuang Fei, Zeping Gui, Zijie Wang, Hao Chen, Li Sun, Jun Tao, Zhijian Han, Xiaobing Ju, Ruoyun Tan, Min Gu, Zhengkai Huang","doi":"10.2174/0113892002282727240307072255","DOIUrl":"10.2174/0113892002282727240307072255","url":null,"abstract":"<p><strong>Background: </strong>BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection.</p><p><strong>Material/methods: </strong>The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively.</p><p><strong>Results: </strong>A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004).</p><p><strong>Conclusion: </strong>We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"188-196"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safety Aspects of Herb Interactions: Current Understanding and Future Prospects. 草药相互作用的安全问题:当前认识与未来展望》。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002289753240305062601
Subhajit Hazra, Preet Amol Singh
{"title":"Safety Aspects of Herb Interactions: Current Understanding and Future Prospects.","authors":"Subhajit Hazra, Preet Amol Singh","doi":"10.2174/0113892002289753240305062601","DOIUrl":"10.2174/0113892002289753240305062601","url":null,"abstract":"<p><strong>Background: </strong>The use of herbal medicines is on the rise throughout the world due to their perceived safety profile. However, incidences of herb-drug, herb-herb and herb-food interactions considering safety aspects have opened new arenas for discussion.</p><p><strong>Objective: </strong>The current study aims to provide comprehensive insights into the various types of herb interactions, the mechanisms involved, their assessment, and historical developments, keeping herbal safety at the central point of discussion.</p><p><strong>Methods: </strong>The authors undertook a focused/targeted literature review and collected data from various databases, including Science Direct, Wiley Online Library, Springer, PubMed, and Google Scholar. Conventional literature on herbal remedies, such as those by the WHO and other international or national organizations.</p><p><strong>Results: </strong>The article considered reviewing the regulations, interaction mechanisms, and detection of herb-herb, herb-drug and herb-food interactions in commonly used yet vital plants, including <i>Glycyrrhiza glabra, Mentha piperita, Aloe barbadensis, Zingiber officinale, Gingko biloba, Withania somnifera, etc</i>. The study found that healthcare professionals worry about patients not informing them about their herbal prescriptions (primarily used with conventional treatment), which can cause herb-drug/herb-food/herb-herb interactions. These interactions were caused by altered pharmacodynamic and pharmacokinetic processes, which might be explained using <i>in-vivo, in-vitro, in-silico</i>, pharmacogenomics, and pharmacogenetics. Nutrivigilance may be the greatest method to monitor herb-food interactions, but its adoption is limited worldwide.</p><p><strong>Conclusion: </strong>This article can serve as a lead for clinicians, guiding them regarding herb-drug, herb-food, and herb-herb interactions induced by commonly consumed plant species. Patients may also be counseled to avoid conventional drugs, botanicals, and foods with a restricted therapeutic window.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"28-53"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Where will Medicines that Serve the Global South and Economically Disadvantaged People Come From? 服务于全球南部和经济弱势人群的药品从何而来?
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/138920022501240507141919
Ming Hu
{"title":"Where will Medicines that Serve the Global South and Economically Disadvantaged People Come From?","authors":"Ming Hu","doi":"10.2174/138920022501240507141919","DOIUrl":"https://doi.org/10.2174/138920022501240507141919","url":null,"abstract":"","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"25 1","pages":"1"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Drug-Drug Interactions between Losartan and Carbamazepine: A Pharmacokinetic and Pharmacodynamic Study. 探索氯沙坦和卡马西平之间的药物相互作用:一项药代动力学和药效学研究。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002358068250119052940
Shruthi A Sundargowda, Sunil Kumar Kadiri
{"title":"Exploring Drug-Drug Interactions between Losartan and Carbamazepine: A Pharmacokinetic and Pharmacodynamic Study.","authors":"Shruthi A Sundargowda, Sunil Kumar Kadiri","doi":"10.2174/0113892002358068250119052940","DOIUrl":"10.2174/0113892002358068250119052940","url":null,"abstract":"<p><strong>Background: </strong>Hypertension, which affects 1.28 billion people globally aged 30 to 79, is characterized by continuously high blood pressure (140/90 or more) and raises the risk of premature death. Losartan, an angiotensin receptor blocker (ARB), is suggested for patients under the age of 55 who cannot take ACE inhibitors as a first treatment option. Epilepsy, a chronic neurological illness marked by repeated seizures, affects more than 50 million individuals worldwide and is the third most common chronic brain disorder. Both hypertension and epilepsy are frequent chronic illnesses, with increased blood pressure greatly raising the risk of epilepsy due to its relationship with cerebrovascular disease, doubling the risk when compared to people with normal blood pressure.</p><p><strong>Objective: </strong>The effect on pharmacokinetics and pharmacodynamics of losartan on concomitant administration with carbamazepine was investigated.</p><p><strong>Materials and methods: </strong>Wistar rats of either sex, with a minimum of six animals per group, were used in the investigation. The rats were treated with Losartan and Losartan-Carbamazepine for 30 days. Blood samples were taken via retro-orbital plexus at 0, 1, 2, 4, 6, and 12 hours after treatment concluded, and they were subjected to high-performance liquid chromatography for plasma analysis to calculate AUC, t1/2, and Clearance. A pharmacodynamic evaluation was done by inducing hypertension in rats using a 10% fructose solution and the effect of pretreated Losartan and Losartan-Carbamazepine on blood pressure was determined.</p><p><strong>Results: </strong>In the Losartan and Carbamazepine treated group, there was a reduction in the AUC and t1/2 and a reported increase in the clearance value compared to Losartan alone treated rats. In fructose-induced hypertension model to evaluate the effect of losartan and carbamazepine on BP showed an increase in mean arterial pressure, plasma glucose, and a reduction in triglycerides level was noted in comparison to Losartan alone treated rats indicating therapeutic failure of Losartan.</p><p><strong>Conclusion: </strong>Based on these studies, it is concluded that CBZ has reduced the effectiveness of losartan and therefore, co-administration of these drugs should be avoided.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"685-694"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Five Natural Anthraquinone Compounds as Potent Inhibitors against CYP1B1: Implications for Cancer Treatment. 五种天然蒽醌类化合物作为CYP1B1有效抑制剂的表征:对癌症治疗的意义。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002329282250108163208
Zujia Chen, Zhixiang Xu, Xiaodong Chen, Xintong Guan, Jie Du, Jiahui Zhang, Changyuan Wang, Jingjing Wu
{"title":"Characterization of Five Natural Anthraquinone Compounds as Potent Inhibitors against CYP1B1: Implications for Cancer Treatment.","authors":"Zujia Chen, Zhixiang Xu, Xiaodong Chen, Xintong Guan, Jie Du, Jiahui Zhang, Changyuan Wang, Jingjing Wu","doi":"10.2174/0113892002329282250108163208","DOIUrl":"10.2174/0113892002329282250108163208","url":null,"abstract":"<p><strong>Background: </strong>Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic enzyme that is overexpressed in many tumors and is associated with tumor development and acquired resistance. Few studies have reported that anthraquinone compounds have inhibitory activity against the CYP1B1 enzyme. Cassiae semen (Leguminosae) is a well-known traditional Chinese medicine containing more than 70 compounds. The crude extracts and pure compounds of <i>Cassiae semen</i> have been widely used in preclinical and clinical practice for their beneficial effects, such as neuroprotective, hepatoprotective, antimicrobial, antioxidant, and hypotensive effects. Aloe-emodin, chrysophanol, obtusifolin, aurantio-obtusin, and rhein are important active natural anthraquinones in Cassiae semen.</p><p><strong>Objective: </strong>Aloe-emodin, chrysophanol, obtusifolin, aurantio-obtusin, and rhein have a wide range of pharmacological activities and have been found to have good anti-tumor and antioxidant effects. However, the underlying mechanisms of these pharmacological activities remain poorly understood. This study aimed to investigate the inhibitory effects of five natural anthraquinones on the activity of CYP1B1 and to analyze the structure- activity relationship of these compounds.</p><p><strong>Materials and methods: </strong>In this study, 7-ethoxyresorufin O-deethylation (EROD) was used as the fluorescent substrate of CYP1B1 to investigate the inhibition effect, and molecular docking was performed to further determine the structural-activity relationship of the compound molecules.</p><p><strong>Results: </strong>We found that aloe-emodin and chrysophanol had strong inhibitory effects on CYP1B1 with IC<sub>50</sub> values of 0.28 and 0.34μM, respectively, while obtusifolin and aurantio-obtusin had IC<sub>50</sub> values of 0.77μM and 9.11μM, respectively. The structural activity analysis showed that the inhibition strength was related to the position of the hydroxyl group substitution and the number of methoxy group substitutions. Rhein containing one carboxyl group showed the weakest inhibition of 23.72μM. The inhibition kinetics showed that all five compounds belonged to the non-competitive inhibition model. The inhibition kinetics revealed that all five compounds exhibited the non-competitive inhibition model.</p><p><strong>Conclusion: </strong>The present study provided a comprehensive analysis of the inhibitory effects of five natural anthraquinones, namely aloe-emodin, chrysophanol, obtusifolin, aurantio-obtusin and rhein, on CYP1B1 activity, and elucidated the structure-activity relationship. Molecular docking simulations further revealed the specific amino acid residues within the active site of CYP1B1, where these compounds exerted their actions. These findings offer novel insights into investigating the potential antitumor properties of natural anthraquinones.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"677-684"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetic Interactions of Paxlovid Involving CYP3A Enzymes and P-gp Transporter: An Overview of Clinical Data. Paxlovid涉及CYP3A酶和P-gp转运蛋白的药代动力学相互作用:临床数据综述
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002320326250123082112
Naina Mohamed Pakkir Maideen, Krishnaveni Kandasamy, Rajkapoor Balasubramanian
{"title":"Pharmacokinetic Interactions of Paxlovid Involving CYP3A Enzymes and P-gp Transporter: An Overview of Clinical Data.","authors":"Naina Mohamed Pakkir Maideen, Krishnaveni Kandasamy, Rajkapoor Balasubramanian","doi":"10.2174/0113892002320326250123082112","DOIUrl":"10.2174/0113892002320326250123082112","url":null,"abstract":"<p><strong>Background: </strong>The US FDA has approved paxlovid, a combination of nirmatrelvir and ritonavir, as the first oral treatment for the management of mild-to-moderate COVID-19 patients.</p><p><strong>Objective: </strong>The purpose of this review article is to explore the clinical data that is currently available regarding the drug-drug interactions (DDIs) of paxlovid with various medications.</p><p><strong>Methods: </strong>Keywords, such as drug interactions, paxlovid, ritonavir, nirmatrelvir, pharmacokinetic interactions, CYP3A, and P-glycoprotein, were used to search online databases, including LitCOVID, Scopus, Embase, EBSCO host, Google Scholar, ScienceDirect, Cochrane Library, and reference lists.</p><p><strong>Results: </strong>Paxlovid interacted with a variety of medications due to strong inhibition of CYP3A4 and P-gp transporter protein by ritonavir and the dual function of nirmatrelvir as a substrate and inhibitor of CYP3A enzymes and P-gp transporter protein. Numerous case reports and other studies determined that the risk of toxicities of several drugs, including anticoagulants (warfarin, rivaroxaban), calcium channel blockers (nifedipine, manidipine, verapamil), statins (atorvastatin), immunosuppressants (tacrolimus), antiarrhythmics (amiodarone), antipsychotics (clozapine, quetiapine), and ranolazine have been enhanced by the concomitant administration of paxlovid.</p><p><strong>Conclusion: </strong>Adverse effects of paxlovid from DDIs can range from less-than-ideal therapeutic responses to potentially fatal toxicities. Effective management requires close observation, adjustments to dosage, and assessment of substitute treatments. Collaboration between pharmacists and other medical professionals is necessary to guarantee effective and safe treatment outcomes of paxlovid therapy.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"639-652"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism. 高海拔缺氧对镇静催眠药物代谢和药代动力学的影响及调节机制。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002318723240802100729
Lu Tian, Guiqin Liu, Junjun Han, Xiangyang Li
{"title":"Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism.","authors":"Lu Tian, Guiqin Liu, Junjun Han, Xiangyang Li","doi":"10.2174/0113892002318723240802100729","DOIUrl":"10.2174/0113892002318723240802100729","url":null,"abstract":"<p><p>Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of high-altitude hypoxia on sleep.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"416-424"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment. 用于 2 型糖尿病治疗的新型先导药物的蛋白质-药物相互作用预测、药理模型和毒代动力学。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002321919240801065905
Anuradha Mehra, Amit Mittal, Prakhar Kumar Vishwakarma
{"title":"Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment.","authors":"Anuradha Mehra, Amit Mittal, Prakhar Kumar Vishwakarma","doi":"10.2174/0113892002321919240801065905","DOIUrl":"10.2174/0113892002321919240801065905","url":null,"abstract":"<p><strong>Background: </strong>Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives.</p><p><strong>Objective: </strong>The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes.</p><p><strong>Methods: </strong>Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity.</p><p><strong>Results: </strong>Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity.</p><p><strong>Conclusion: </strong>Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its hi","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"355-380"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信