眼部疾病控释制剂的研究进展:提高患者依从性和治疗效果。

IF 1.8 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Smita Narwal, Dushyant, Gurvirender Singh, Nisha Grewal, Vishal Chanalia, Ashwani K Dhingra
{"title":"眼部疾病控释制剂的研究进展:提高患者依从性和治疗效果。","authors":"Smita Narwal, Dushyant, Gurvirender Singh, Nisha Grewal, Vishal Chanalia, Ashwani K Dhingra","doi":"10.2174/0113892002384586250731104453","DOIUrl":null,"url":null,"abstract":"<p><p>A majority of the global population suffers from eye diseases, but few effective treatment options are available with ophthalmic drug therapies. The reasons that have been identified are (1) lack of awareness about the options for treatments, drugs, polymeric science, or physiological barriers, (2) limitations in bringing drug therapies to the posterior segment of the eye due to physiological or anatomical limitations, and (3) regulatory and production difficulties of ocular drug products. Innovative ocular medication delivery and therapies are covered in this study, including hydrogels, nano micelles, implants, nanoparticles, microparticles, liposomes, in situ gels, and microneedles. Moreover, due to their potential to capture both hydrophilic and lipophilic medications, increase ocular permeability, prolong the period of residence, enhance drug stability, and increase bioavailability, this review includes nanotechnology-based carriers. The research encompassed various eye disorders, obstacles to ocular delivery, multiple ocular administration routes, a range of nanostructured platforms, characterization approaches, methods to improve ocular delivery, and emerging technologies. This review aims to provide information on the anatomy of the eye, various ocular conditions, and obstacles to ocular delivery. The benefits and drawbacks of various ocular dose forms or delivery techniques are also evaluated. Finally, it describes methods for increasing ocular bioavailability.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Controlled Release Formulations for Ocular Diseases: Improving Patient Compliance and Therapeutic Outcomes.\",\"authors\":\"Smita Narwal, Dushyant, Gurvirender Singh, Nisha Grewal, Vishal Chanalia, Ashwani K Dhingra\",\"doi\":\"10.2174/0113892002384586250731104453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A majority of the global population suffers from eye diseases, but few effective treatment options are available with ophthalmic drug therapies. The reasons that have been identified are (1) lack of awareness about the options for treatments, drugs, polymeric science, or physiological barriers, (2) limitations in bringing drug therapies to the posterior segment of the eye due to physiological or anatomical limitations, and (3) regulatory and production difficulties of ocular drug products. Innovative ocular medication delivery and therapies are covered in this study, including hydrogels, nano micelles, implants, nanoparticles, microparticles, liposomes, in situ gels, and microneedles. Moreover, due to their potential to capture both hydrophilic and lipophilic medications, increase ocular permeability, prolong the period of residence, enhance drug stability, and increase bioavailability, this review includes nanotechnology-based carriers. The research encompassed various eye disorders, obstacles to ocular delivery, multiple ocular administration routes, a range of nanostructured platforms, characterization approaches, methods to improve ocular delivery, and emerging technologies. This review aims to provide information on the anatomy of the eye, various ocular conditions, and obstacles to ocular delivery. The benefits and drawbacks of various ocular dose forms or delivery techniques are also evaluated. Finally, it describes methods for increasing ocular bioavailability.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892002384586250731104453\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002384586250731104453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球大多数人口都患有眼病,但很少有有效的眼科药物治疗选择。已确定的原因有:(1)缺乏对治疗方案、药物、聚合物科学或生理障碍的认识,(2)由于生理或解剖学的限制,将药物治疗引入眼后段的限制,以及(3)眼部药物产品的监管和生产困难。本研究涵盖了创新的眼部药物输送和治疗,包括水凝胶、纳米胶束、植入物、纳米颗粒、微颗粒、脂质体、原位凝胶和微针。此外,由于它们具有捕获亲水和亲脂药物、增加眼通透性、延长停留期、增强药物稳定性和提高生物利用度的潜力,本综述包括基于纳米技术的载体。该研究涵盖了各种眼部疾病、眼部给药障碍、多种眼部给药途径、一系列纳米结构平台、表征方法、改善眼部给药的方法和新兴技术。这篇综述的目的是提供有关眼睛的解剖结构,各种眼部状况和眼部分娩障碍的信息。还评估了各种眼部剂量形式或给药技术的优点和缺点。最后,介绍了提高眼生物利用度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Controlled Release Formulations for Ocular Diseases: Improving Patient Compliance and Therapeutic Outcomes.

A majority of the global population suffers from eye diseases, but few effective treatment options are available with ophthalmic drug therapies. The reasons that have been identified are (1) lack of awareness about the options for treatments, drugs, polymeric science, or physiological barriers, (2) limitations in bringing drug therapies to the posterior segment of the eye due to physiological or anatomical limitations, and (3) regulatory and production difficulties of ocular drug products. Innovative ocular medication delivery and therapies are covered in this study, including hydrogels, nano micelles, implants, nanoparticles, microparticles, liposomes, in situ gels, and microneedles. Moreover, due to their potential to capture both hydrophilic and lipophilic medications, increase ocular permeability, prolong the period of residence, enhance drug stability, and increase bioavailability, this review includes nanotechnology-based carriers. The research encompassed various eye disorders, obstacles to ocular delivery, multiple ocular administration routes, a range of nanostructured platforms, characterization approaches, methods to improve ocular delivery, and emerging technologies. This review aims to provide information on the anatomy of the eye, various ocular conditions, and obstacles to ocular delivery. The benefits and drawbacks of various ocular dose forms or delivery techniques are also evaluated. Finally, it describes methods for increasing ocular bioavailability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信