Critical Reviews in Biotechnology最新文献

筛选
英文 中文
The mechanisms of environmental stress tolerance in Gluconobacter oxydans: progress and perspectives. Gluconobacter oxydans 的环境胁迫耐受机制:进展与展望。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-20 DOI: 10.1080/07388551.2024.2426011
Yan Chen, Fei Liu, Aobo Sha, Meijuan Xu, Zhiming Rao, Xian Zhang
{"title":"The mechanisms of environmental stress tolerance in <i>Gluconobacter oxydans</i>: progress and perspectives.","authors":"Yan Chen, Fei Liu, Aobo Sha, Meijuan Xu, Zhiming Rao, Xian Zhang","doi":"10.1080/07388551.2024.2426011","DOIUrl":"https://doi.org/10.1080/07388551.2024.2426011","url":null,"abstract":"<p><p><i>Gluconobacter oxydans</i> have been widely used in industrial compound production for their incomplete oxidation ability. However, they are often subjected to a wide variety of severe environmental stresses, such as extreme pH, high temperature, osmotic pressure, and organic solvents, which greatly repress microbial growth viability and productivity. As typical biocatalysis chassis cells with a high tolerance to external environmental stresses, it is extremely important to construct highly tolerant chassis cells and understand the tolerance mechanisms of <i>G. oxydans</i> and how different stresses interact with the cell: membranes, phospholipid bilayers, transporters, and chaperone proteins. In this review, we discuss and summarize the mechanisms of environmental stress tolerance in <i>G. oxydans</i>, and the promising strategies that can be used to further construct tolerant strains are prospected.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-14"},"PeriodicalIF":8.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing cyclotide bioproduction: harnessing biological synthesis methods and various expression systems for large-scale manufacturing. 加强环肽生物生产:利用生物合成方法和各种表达系统进行大规模生产。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-07 DOI: 10.1080/07388551.2024.2412780
Mohammad Sadegh Taghizadeh, Ali Niazi, Armin Mirzapour-Kouhdasht, Eric C Pereira, Marco Garcia-Vaquero
{"title":"Enhancing cyclotide bioproduction: harnessing biological synthesis methods and various expression systems for large-scale manufacturing.","authors":"Mohammad Sadegh Taghizadeh, Ali Niazi, Armin Mirzapour-Kouhdasht, Eric C Pereira, Marco Garcia-Vaquero","doi":"10.1080/07388551.2024.2412780","DOIUrl":"https://doi.org/10.1080/07388551.2024.2412780","url":null,"abstract":"<p><p>Peptide-based medications hold immense potential in addressing a wide range of human disorders and discomforts. However, their widespread utilization encounters two major challenges: preservation and production efficiency. Cyclotides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit unique characteristics, such as a cyclic backbone and cystine knot, enhancing their stability and contributing to a wide range of pharmacological properties exhibited by these compounds. Cyclotides are efficient in the biomedical (e.g., antitumor, antidiabetic, antimicrobial, antiviral) and agrochemical fields by exhibiting activity against pests and plant diseases. Furthermore, their structural attributes make them suitable as molecular scaffolds for grafting and drug delivery. Notably, the mutated variant of kalata B1 cyclotide ([T20K] kalata B1) has recently entered phase 1 of human clinical trials for multiple sclerosis, building upon the success observed in animal trials. To enable large-scale production of cyclotides, it is crucial to further explore their remarkable structural and bioactive properties. This necessitates extensive research focused on enhancing the efficiency of the processes required for their production. This study provides a comprehensive review of the biological synthesis methods of cyclotides, with particular emphasis on various expression systems, namely bacteria, plants, yeast, and cell-free systems. By investigating these expression systems, it becomes possible to design production systems that are adaptable, economically viable, and efficient for generating active and pure cyclotides at an industrial scale. The advantages of biological synthesis over chemical synthesis are thoroughly explored, highlighting the potential of these expression systems in meeting the demands of large-scale cyclotide production.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-23"},"PeriodicalIF":8.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Farm to fork applications: how vibrational spectroscopy can be used along the whole value chain? 从农场到餐桌的应用:如何在整个价值链中使用振动光谱?
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-04 DOI: 10.1080/07388551.2024.2409124
Ravi Pandiselvam, Alev Yüksel Aydar, Zeynep Aksoylu Özbek, Didem Sözeri Atik, Özge Süfer, Bilge Taşkin, Emine Olum, Seema Ramniwas, Sarvesh Rustagi, Daniel Cozzolino
{"title":"Farm to fork applications: how vibrational spectroscopy can be used along the whole value chain?","authors":"Ravi Pandiselvam, Alev Yüksel Aydar, Zeynep Aksoylu Özbek, Didem Sözeri Atik, Özge Süfer, Bilge Taşkin, Emine Olum, Seema Ramniwas, Sarvesh Rustagi, Daniel Cozzolino","doi":"10.1080/07388551.2024.2409124","DOIUrl":"https://doi.org/10.1080/07388551.2024.2409124","url":null,"abstract":"<p><p>Vibrational spectroscopy is a nondestructive analysis technique that depends on the periodic variations in dipole moments and polarizabilities resulting from the molecular vibrations of molecules/atoms. These methods have important advantages over conventional analytical techniques, including (a) their simplicity in terms of implementation and operation, (b) their adaptability to on-line and on-farm applications, (c) making measurement in a few minutes, and (d) the absence of dangerous solvents throughout sample preparation or measurement. Food safety is a concept that requires the assurance that food is free from any physical, chemical, or biological hazards at all stages, from farm to fork. Continuous monitoring should be provided in order to guarantee the safety of the food. Regarding their advantages, vibrational spectroscopic methods, such as Fourier-transform infrared (FTIR), near-infrared (NIR), and Raman spectroscopy, are considered reliable and rapid techniques to track food safety- and food authenticity-related issues throughout the food chain. Furthermore, coupling spectral data with chemometric approaches also enables the discrimination of samples with different kinds of food safety-related hazards. This review deals with the recent application of vibrational spectroscopic techniques to monitor various hazards related to various foods, including crops, fruits, vegetables, milk, dairy products, meat, seafood, and poultry, throughout harvesting, transportation, processing, distribution, and storage.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-44"},"PeriodicalIF":8.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. 血红素的生物合成、获取、调节和再循环:最新进展。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2024-01-16 DOI: 10.1080/07388551.2023.2291339
Fei Yu, Ziwei Wang, Zihan Zhang, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du, Xinrui Zhao
{"title":"Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances.","authors":"Fei Yu, Ziwei Wang, Zihan Zhang, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du, Xinrui Zhao","doi":"10.1080/07388551.2023.2291339","DOIUrl":"10.1080/07388551.2023.2291339","url":null,"abstract":"<p><p>Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1422-1438"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation. 微生物炼金术:通过发酵将酿酒废弃谷物转化为高价值产品。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2024-01-01 DOI: 10.1080/07388551.2023.2286430
Vishal Ahuja, Shikha Chauhan, Sukhvinder Singh Purewal, Sanjeet Mehariya, Anil Kumar Patel, Gopalakrishnan Kumar, Mallavarapu Megharaj, Yung-Hun Yang, Shashi Kant Bhatia
{"title":"Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation.","authors":"Vishal Ahuja, Shikha Chauhan, Sukhvinder Singh Purewal, Sanjeet Mehariya, Anil Kumar Patel, Gopalakrishnan Kumar, Mallavarapu Megharaj, Yung-Hun Yang, Shashi Kant Bhatia","doi":"10.1080/07388551.2023.2286430","DOIUrl":"10.1080/07388551.2023.2286430","url":null,"abstract":"<p><p>Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization <i>via</i> microbial fermentation and associated challenges.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1367-1385"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. 条条大路通罗马:丝状真菌草青霉和里氏木霉中植物细胞壁降解酶的多种生物合成调控。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2023-11-30 DOI: 10.1080/07388551.2023.2280810
Shuai Zhao, Ting Zhang, Tomohisa Hasunuma, Akihiko Kondo, Xin-Qing Zhao, Jia-Xun Feng
{"title":"Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi <i>Penicillium oxalicum</i> and <i>Trichoderma reesei</i>.","authors":"Shuai Zhao, Ting Zhang, Tomohisa Hasunuma, Akihiko Kondo, Xin-Qing Zhao, Jia-Xun Feng","doi":"10.1080/07388551.2023.2280810","DOIUrl":"10.1080/07388551.2023.2280810","url":null,"abstract":"<p><p>Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially <i>Trichoderma reesei</i> and <i>Penicillium oxalicum</i>. However, an in-depth comparison of these two producers has not been performed. Although both <i>P. oxalicum</i> and <i>T. reesei</i> harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in <i>P. oxalicum</i> and <i>T. reesei</i>, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that \"every road leads to Rome.\" An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1241-1261"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacteriophages: a potential game changer in food processing industry. 噬菌体:食品加工业的潜在变革者。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2024-01-16 DOI: 10.1080/07388551.2023.2299768
Vandana Chaudhary, Priyanka Kajla, Deepika Lather, Nisha Chaudhary, Priya Dangi, Punit Singh, Ravi Pandiselvam
{"title":"Bacteriophages: a potential game changer in food processing industry.","authors":"Vandana Chaudhary, Priyanka Kajla, Deepika Lather, Nisha Chaudhary, Priya Dangi, Punit Singh, Ravi Pandiselvam","doi":"10.1080/07388551.2023.2299768","DOIUrl":"10.1080/07388551.2023.2299768","url":null,"abstract":"<p><p>In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1325-1349"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. 利用蛋白质组学技术鉴定和优化微藻菌株获取优质膳食蛋白质的研究进展。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2023-11-30 DOI: 10.1080/07388551.2023.2283376
Sara Hamzelou, Damien Belobrajdic, James A Broadbent, Angéla Juhász, Kim Lee Chang, Ian Jameson, Peter Ralph, Michelle L Colgrave
{"title":"Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review.","authors":"Sara Hamzelou, Damien Belobrajdic, James A Broadbent, Angéla Juhász, Kim Lee Chang, Ian Jameson, Peter Ralph, Michelle L Colgrave","doi":"10.1080/07388551.2023.2283376","DOIUrl":"10.1080/07388551.2023.2283376","url":null,"abstract":"<p><p>Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1280-1295"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global regulator IrrE on stress tolerance: a review. 关于抗逆性的全球调控因子 IrrE:综述。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2024-01-21 DOI: 10.1080/07388551.2023.2299766
Li Wang, Yong-Shui Tan, Kai Chen, Samuel Ntakirutimana, Zhi-Hua Liu, Bing-Zhi Li, Ying-Jin Yuan
{"title":"Global regulator IrrE on stress tolerance: a review.","authors":"Li Wang, Yong-Shui Tan, Kai Chen, Samuel Ntakirutimana, Zhi-Hua Liu, Bing-Zhi Li, Ying-Jin Yuan","doi":"10.1080/07388551.2023.2299766","DOIUrl":"10.1080/07388551.2023.2299766","url":null,"abstract":"<p><p>Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from <i>Deinococcus radiodurans</i> enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of <i>D. radiodurans</i>. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1439-1459"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ascorbic acid: a metabolite switch for designing stress-smart crops. 抗坏血酸:设计抗逆作物的代谢开关。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2024-01-01 DOI: 10.1080/07388551.2023.2286428
Shefali Mishra, Ankush Sharma, Ashish Kumar Srivastava
{"title":"Ascorbic acid: a metabolite switch for designing stress-smart crops.","authors":"Shefali Mishra, Ankush Sharma, Ashish Kumar Srivastava","doi":"10.1080/07388551.2023.2286428","DOIUrl":"10.1080/07388551.2023.2286428","url":null,"abstract":"<p><p>Plant growth and productivity are continually being challenged by a diverse array of abiotic stresses, including: water scarcity, extreme temperatures, heavy metal exposure, and soil salinity. A common theme in these stresses is the overproduction of reactive oxygen species (ROS), which disrupts cellular redox homeostasis causing oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is an essential nutrient for humans, and also plays a crucial role in the plant kingdom. AsA is synthesized by plants through the d-mannose/l-galactose pathway that functions as a powerful antioxidant and protects plant cells from ROS generated during photosynthesis. AsA controls several key physiological processes, including: photosynthesis, respiration, and carbohydrate metabolism, either by acting as a co-factor for metabolic enzymes or by regulating cellular redox-status. AsA's multi-functionality uniquely positions it to integrate and recalibrate redox-responsive transcriptional/metabolic circuits and essential biological processes, in accordance to developmental and environmental cues. In recognition of this, we present a systematic overview of current evidence highlighting AsA as a central metabolite-switch in plants. Further, a comprehensive overview of genetic manipulation of genes involved in AsA metabolism has been provided along with the bottlenecks and future research directions, that could serve as a framework for designing \"stress-smart\" crops in future.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1350-1366"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信