Enhancing cyclotide bioproduction: harnessing biological synthesis methods and various expression systems for large-scale manufacturing.

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohammad Sadegh Taghizadeh, Ali Niazi, Armin Mirzapour-Kouhdasht, Eric C Pereira, Marco Garcia-Vaquero
{"title":"Enhancing cyclotide bioproduction: harnessing biological synthesis methods and various expression systems for large-scale manufacturing.","authors":"Mohammad Sadegh Taghizadeh, Ali Niazi, Armin Mirzapour-Kouhdasht, Eric C Pereira, Marco Garcia-Vaquero","doi":"10.1080/07388551.2024.2412780","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide-based medications hold immense potential in addressing a wide range of human disorders and discomforts. However, their widespread utilization encounters two major challenges: preservation and production efficiency. Cyclotides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit unique characteristics, such as a cyclic backbone and cystine knot, enhancing their stability and contributing to a wide range of pharmacological properties exhibited by these compounds. Cyclotides are efficient in the biomedical (e.g., antitumor, antidiabetic, antimicrobial, antiviral) and agrochemical fields by exhibiting activity against pests and plant diseases. Furthermore, their structural attributes make them suitable as molecular scaffolds for grafting and drug delivery. Notably, the mutated variant of kalata B1 cyclotide ([T20K] kalata B1) has recently entered phase 1 of human clinical trials for multiple sclerosis, building upon the success observed in animal trials. To enable large-scale production of cyclotides, it is crucial to further explore their remarkable structural and bioactive properties. This necessitates extensive research focused on enhancing the efficiency of the processes required for their production. This study provides a comprehensive review of the biological synthesis methods of cyclotides, with particular emphasis on various expression systems, namely bacteria, plants, yeast, and cell-free systems. By investigating these expression systems, it becomes possible to design production systems that are adaptable, economically viable, and efficient for generating active and pure cyclotides at an industrial scale. The advantages of biological synthesis over chemical synthesis are thoroughly explored, highlighting the potential of these expression systems in meeting the demands of large-scale cyclotide production.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-23"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2412780","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide-based medications hold immense potential in addressing a wide range of human disorders and discomforts. However, their widespread utilization encounters two major challenges: preservation and production efficiency. Cyclotides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit unique characteristics, such as a cyclic backbone and cystine knot, enhancing their stability and contributing to a wide range of pharmacological properties exhibited by these compounds. Cyclotides are efficient in the biomedical (e.g., antitumor, antidiabetic, antimicrobial, antiviral) and agrochemical fields by exhibiting activity against pests and plant diseases. Furthermore, their structural attributes make them suitable as molecular scaffolds for grafting and drug delivery. Notably, the mutated variant of kalata B1 cyclotide ([T20K] kalata B1) has recently entered phase 1 of human clinical trials for multiple sclerosis, building upon the success observed in animal trials. To enable large-scale production of cyclotides, it is crucial to further explore their remarkable structural and bioactive properties. This necessitates extensive research focused on enhancing the efficiency of the processes required for their production. This study provides a comprehensive review of the biological synthesis methods of cyclotides, with particular emphasis on various expression systems, namely bacteria, plants, yeast, and cell-free systems. By investigating these expression systems, it becomes possible to design production systems that are adaptable, economically viable, and efficient for generating active and pure cyclotides at an industrial scale. The advantages of biological synthesis over chemical synthesis are thoroughly explored, highlighting the potential of these expression systems in meeting the demands of large-scale cyclotide production.

加强环肽生物生产:利用生物合成方法和各种表达系统进行大规模生产。
多肽类药物在治疗各种人类疾病和不适方面潜力巨大。然而,它们的广泛应用面临两大挑战:保存和生产效率。环肽是一类经核糖体合成和翻译后修饰的多肽(RiPPs),具有独特的特征,如环状骨架和胱氨酸结,从而提高了其稳定性,并使这些化合物具有广泛的药理特性。环肽在生物医学(如抗肿瘤、抗糖尿病、抗菌、抗病毒)和农用化学品领域具有高效作用,可有效防治害虫和植物病害。此外,它们的结构特性使其适合作为嫁接和给药的分子支架。值得注意的是,在动物试验取得成功的基础上,卡拉塔 B1 环苷酸的变异型([T20K] 卡拉塔 B1)最近已进入治疗多发性硬化症的第一阶段人体临床试验。为实现环肽的大规模生产,进一步探索其显著的结构和生物活性特性至关重要。这就需要开展广泛的研究,重点提高生产环肽所需工艺的效率。本研究全面综述了环苷酸的生物合成方法,特别强调了各种表达系统,即细菌、植物、酵母和无细胞系统。通过研究这些表达系统,就有可能设计出适应性强、经济上可行、高效的生产系统,从而在工业规模上生产出活性高、纯度高的环苷酸。本研究深入探讨了生物合成相对于化学合成的优势,强调了这些表达系统在满足大规模环肽生产需求方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信