Moritz Spiller, Nazila Esmaeili, Thomas Sühn, Axel Boese, Michael Friebe, Alfredo Illanes, Salmai Turial
{"title":"Towards AI-driven minimally invasive needle interventions","authors":"Moritz Spiller, Nazila Esmaeili, Thomas Sühn, Axel Boese, Michael Friebe, Alfredo Illanes, Salmai Turial","doi":"10.1515/cdbme-2023-1140","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1140","url":null,"abstract":"Abstract The overall complication rate during laparoscopic access is estimated to be as high as 14 %. Surgeons have to rely heavily on their experience and haptic perception while inserting the Veress needle or a trocar into the peritoneal cavity. Surgical Audio Guidance (SURAG) is a promising alternative to current techniques. It acquires instrument-born vibroacoustic (VA) waves to track the insertion of the instrument and provide real-time feedback to surgeons. This article presents an initial evaluation of the SURAG technology through two sets of experiments to classify Veress needle events using different AI-models. The results demonstrate the feasibility of using AI for classifying Veress needle events and the potential of the SURAG technology to support surgeons during laparoscopic access and minimally invasive needle interventions in general.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Digital personalized medical insole process","authors":"Diana Völz, Julia Schneider, Ulrich Wuttke","doi":"10.1515/cdbme-2023-1008","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1008","url":null,"abstract":"Abstract Medical insoles are used to correct patient’s foot malpositions or to relieve certain foot areas from pressure. The required insole type depends largely on the presenting clinical picture and the individual’s needs. Accurate fit of medical insoles is critical to wearer acceptance, which is a necessary precondition where further serious injury is to be prevented. An end-to-end digital process offers the potential to better adapt insoles to the personalized patients’ foot geometry and pressure load. Furthermore, the whole gait-cycle could be included in the digitalization process and the adaption could consider special needs of different gait phases. This hasn’t been done, yet. For this purpose, a digital process chain was developed and prototypically tested in collaboration with an orthopaedist. 3D scans of the foot geometry in various loaded conditions were compiled and the corresponding gait analysis images were mapped. Both results were overlaid in a CAD program to create a model and identify the clinical picture. Adapted to the geometry of the foot, a volumetric model of the medical insole was built, individual stress zones were separated and filled with lattice structures of different parameters. The insole was 3D printed. The results of the present examination show benefits in using the loaded foot scan to model insoles, as malpositions can be checked automatically via standard (digital) tests. While it is possible to model and print medical insoles in one piece with differing strengths, there is limited information about the influence of the designed lattice structure on a specific printing result (i. e. the material behaviour).","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The potential role of 3D-printed phantoms in quality control of artificial intelligence-based algorithms in medical imaging","authors":"Ali Pashazadeh, Christoph Hoeschen","doi":"10.1515/cdbme-2023-1074","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1074","url":null,"abstract":"Abstract To ensure accurate and consistent imaging of patients, medical imaging systems are controlled and tested using phantoms. Despite the availability of commercial standard phantoms for decades, 3D printing technology has gained special attention as a tool for producing accurate and costeffective tissue-mimicking phantoms. As artificial intelligence (AI) becomes increasingly prevalent in medical imaging, dedicated phantoms are needed for testing their reliability, robustness, and quality before they are implemented in clinical settings. In this context, 3D-printed imaging phantoms, which have specific requirements relevant to AI models, can play a crucial role. Due to its unique ability to create phantoms of almost any complexity, 3D printing technology seems a suitable approach for the quality control of AI models in medical imaging. The following reviews some of the works that used 3D-printed technology to create custom-built phantoms for use in Computed Tomography (CT), nuclear imaging, Magnetic Resonance Imaging (MRI), and ultrasound imaging. The focus of this short review is on the accuracy of 3D-printed technology in creating imaging phantoms. In the end, the potential of the 3D-printed phantoms in testing and quality control of AI-based algorithms in radiology is discussed.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"165 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alberto Battistel, Hegoa Craamer Lizarraga, Maite Termenon, Knut Möller
{"title":"Multifrequency bioimpedance device based on the Analog Discovery 2: performance and characterization","authors":"Alberto Battistel, Hegoa Craamer Lizarraga, Maite Termenon, Knut Möller","doi":"10.1515/cdbme-2023-1134","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1134","url":null,"abstract":"Abstract Bioimpedance spectroscopy can be used to investigate the composition and monitor the human body, organs, tissues, or cell cultures by measuring the voltage developed by the injection of small alternating currents at different frequencies. These currents are injected sequentially through a frequency sweep and a with a Howland current source or one of its modifications. However, the frequency sweep is not time efficient and introduces problems with data coherence in the case of bioinstability. On the other hand, the Howland current source requires high precision matching between its components. In this contribution we developed a custom-made device for bioimpedance measurements based on a multisine current waveform and on a negative-feedback topology for the current source. Measurements on passive elements showed that the device had less than 1Ω and 0.05∘ uncertainty in the frequency range between 500 Hz and 200 kHz for impedance between 1 kΩ and 10 kΩ. The measurements were affected by an inductive artifact connected with the limited common-mode rejection at high frequencies. Nevertheless, we could characterize the artifacts through a fitting procedure to recover the expected value of the targeted impedance.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135393474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Wittenberg, Thomas Eixelberger, Stephan Kruck, Sebastian Belle, Maximilian Kriegmair, Christian Bolenz, Philip Maisch
{"title":"Deep Learning by Domain Transfer for Early Tumor Detection in the Urinary Bladder","authors":"Thomas Wittenberg, Thomas Eixelberger, Stephan Kruck, Sebastian Belle, Maximilian Kriegmair, Christian Bolenz, Philip Maisch","doi":"10.1515/cdbme-2023-1014","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1014","url":null,"abstract":"Abstract Background: Bladder cancer (BCa) is the second most common genitourinary malignancy and has a mortality of 165,000 deaths p.a. The diagnosis of BCa is mostly carried out using cystoscopy - the visual examination of the urinary bladder with an endoscope. White light cystoscopy is currently considered as gold standard for the diagnosis. Nevertheless, especially flat, small or weakly textured lesions, are very difficult to detect and diagnose. Objective: With the advent of deep learning and already commercially available systems for the detection of adenomas in colonoscopy, it is investigated how such a system - for colonoscopy - performs if retrained and tested with cystoscopy images. Methods: A deep neural network with a YOLOv7-tiny architecture was pre-trained on 35,699 colonoscopy images (partially from Mannheim), yielding a precision = 0.92, sensitivity = 0.90, F1 = 0.91 on public colonoscopy data collections. Results: Testing this adenomadetection network with cystoscopy images from three sources (Ulm, Erlangen, Pforzheim), F1 scores in the range of 0.67 to 0.74 could be achieved. The network was then retrained with 12,066 cystoscopy images (from Mannheim), yielding improved F1 scores in the range of 0.78 to 0.85. Conclusion: It could be shown that a deep learning network for adenoma detection in colonoscopy is ad-hoc able to detect approximately 75% of the lesions in the urinary bladder in cystoscopy images, suggesting that these lesions have a similar appearance. After retraining the network with additional cystoscopy data, the performance for urinary lesion detection could be improved, indicating that a domain-shift with adequate additional data is feasible.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135393935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nina Ehlert, Desiree Rieks, Andreas Kampmann, Nils-Claudius Gellrich
{"title":"PH-triggered drug release of ciprofloxacin from layer-by-layer coatings on titanium","authors":"Nina Ehlert, Desiree Rieks, Andreas Kampmann, Nils-Claudius Gellrich","doi":"10.1515/cdbme-2023-1009","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1009","url":null,"abstract":"Abstract Implant-associated infections are still a major issue in implant surgery. Biofilms tend to form on implant surfaces, like titanium, and can hardly be reached by the immune system. Additionally, systemic treatments with antibiotics often fail and cause severe side effects for the patient. Direct delivery of the antibiotic from the implant surface to the surrounding tissue is one approach to solve this problem. To realize this, the application of pH-sensitive coatings on implant surfaces, which release their cargo only if an infection arises, is a promising option. This can be triggered by the decrease of the pH value occurring in infected tissue. For such pH-sensitive systems with integrated drug loading capacity layer-by-layer coatings with weak polyelectrolytes can be used. Here, we present a coating applied on titanium substrates by dip-coating. As negatively charged polyelectrolyte polyacrylic acid, as positively charged poly(allylamine hydrochloride) is used. As an effective drug, the antibiotic ciprofloxacin is incorporated into the coating and the release profiles are recorded.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135393941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philipp Sembdner, Karl Blaurock, Kristin Paetzold-Byhain
{"title":"Method for CAD/CAM-based production of patient-specific anatomical bone surrogates from polyurethane rigid foams of different densities for various clinical applications","authors":"Philipp Sembdner, Karl Blaurock, Kristin Paetzold-Byhain","doi":"10.1515/cdbme-2023-1020","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1020","url":null,"abstract":"Abstract Physical models of bony areas are used in the medical environment for training, patient information or for various examinations. These are idealized average models which, however, do not reflect the individuality of a respective patient. Furthermore, the mechanical properties of the bony structure with cortical bone and cancellous bone are not considered in most models. A few manufacturers, such as SawBone, offer models and material blocks that approximate the properties of the bone. However, these are not patientspecific either. This paper presents a proposal for a method to create patient-specific physical bone models with CAD/CAM technologies that approximate shape and mechanical properties. The models are made of two different rigid polyurethane foams for cortical bone and cancellous bone. The methodical development includes the elaboration of a framework starting from the patient's CT data, through design derivation, to fabrication. Furthermore, a possible process for fabrication in the form of a demonstrator and its application in sawing tests will be demonstrated.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135393943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enabling Data-Driven Nursing Innovations: User-centered Development of a Nursing Data Module","authors":"Maren Warnecke, Daniela Holle, Anja Burmann","doi":"10.1515/cdbme-2023-1085","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1085","url":null,"abstract":"Abstract The documentation landscape for nursing care data in Germany is predominantly heterogeneous and unstructured. Therefore, insightful methods such as Artificial Intelligence (AI) are difficult to implement. We propose a stepwiseapproach that identifies relevant information from nursing theory and practice and maps it to a standardized nursing core data set to enable data-based improvement of nursing care. This can be used for various use-cases in care, such as risk detection and prevention in diverse care contexts. Many care processes can benefit of a cross-facility and standardized repository and associated applications. We propose an approach that enables the use of AI while leveraging consensus and evidenced-based expert knowledge from nursing science.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication and characterization of CMOS-compatible perforated micromembranes for biomedical applications","authors":"Noah Brechmann, Marvin Michel, Alina Bola, Franziska Renz, Andreas Pickhinke, Karsten Seidl","doi":"10.1515/cdbme-2023-1110","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1110","url":null,"abstract":"Abstract We report the optimized wafer-scale fabrication of microporous membranes for applications in the biomedical field such as cell filtration. Existing similar devices can mostly not be integrated on CMOS circuits or mass fabricated. Both is enabled here by the exclusive use of scalable and low temperature microsystems technology methods on silicon wafers. The successfully manufactured devices are characterized with regard to the feasibility of an integrated clogging detection or captured cell counter. The results from electrochemical measurements across the chips match the calculations from a corresponding theoretical model well, verifying the described concept. Further electrical functionalities may thus be integrated into the micromembrane device in the future, equipping it for new applications and allowing a more efficient solution for existing tasks of similar devices.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jakob Cramer, Niklas Dassow, Georg Böttcher-Rebmann, Thomas Lenarz, Thomas S. Rau, Leon Budde
{"title":"Temporal bone phantom for decoupled cochlear implant electrode insertion force measurement","authors":"Jakob Cramer, Niklas Dassow, Georg Böttcher-Rebmann, Thomas Lenarz, Thomas S. Rau, Leon Budde","doi":"10.1515/cdbme-2023-1033","DOIUrl":"https://doi.org/10.1515/cdbme-2023-1033","url":null,"abstract":"Abstract In research on cochlear implants, preclinical testing of newly developed electrode arrays and surgical tools is an essential procedure, which requires the availability of a suitable testing environment. For this purpose, human temporal bone specimens are most realistic, but their availability is limited and additional parameters such as insertion forces are hardly measurable. Therefore, the aim of this study was to develop a temporal bone phantom with realistic anatomical structures for intracochlear force measurement. The temporal bone was segmented from CBCT data of a human cadaver head. The segmented model was 3D printed with an additional artificial skin layer to enable the simulated use of surgical instruments such as a self-retaining retractor. A mechanically decoupled artificial cochlear model was realistically positioned within the temporal bone and was furthermore attached to a force sensor. The usability of the phantom was evaluated by performing automated EA insertions using an automated hydraulic insertion device. The experiments showed that the insertion forces within the cochlea could be measured without interferences from surrounding structures. Moreover, the artificial skin provided a rigid interface for the insertion tool. The new phantom is a realistic testing and training platform for cochlear implant electrode insertions with the advantage of measureable insertion forces.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}