L. Westhofen, J. A. Fernández-Fernández, S. R. Jeske, J. Bender
{"title":"Strongly Coupled Simulation of Magnetic Rigid Bodies","authors":"L. Westhofen, J. A. Fernández-Fernández, S. R. Jeske, J. Bender","doi":"10.1111/cgf.15185","DOIUrl":"https://doi.org/10.1111/cgf.15185","url":null,"abstract":"<div>\u0000 <p>We present a strongly coupled method for the robust simulation of linear magnetic rigid bodies. Our approach describes the magnetic effects as part of an incremental potential function. This potential is inserted into the reformulation of the equations of motion for rigid bodies as an optimization problem. For handling collision and friction, we lean on the Incremental Potential Contact (IPC) method. Furthermore, we provide a novel, hybrid explicit / implicit time integration scheme for the magnetic potential based on a distance criterion. This reduces the fill-in of the energy Hessian in cases where the change in magnetic potential energy is small, leading to a simulation speedup without compromising the stability of the system. The resulting system yields a strongly coupled method for the robust simulation of magnetic effects. We showcase the robustness in theory by analyzing the behavior of the magnetic attraction against the contact resolution. Furthermore, we display stability in practice by simulating exceedingly strong and arbitrarily shaped magnets. The results are free of artifacts like bouncing for time step sizes larger than with the equivalent weakly coupled approach. Finally, we showcase the utility of our method in different scenarios with complex joints and numerous magnets.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Löschner, J. A. Fernández-Fernández, S. R. Jeske, J. Bender
{"title":"Curved Three-Director Cosserat Shells with Strong Coupling","authors":"F. Löschner, J. A. Fernández-Fernández, S. R. Jeske, J. Bender","doi":"10.1111/cgf.15183","DOIUrl":"https://doi.org/10.1111/cgf.15183","url":null,"abstract":"<div>\u0000 <p>Continuum-based shell models are an established approach for the simulation of thin deformables in computer graphics. However, existing research in physically-based animation is mostly focused on shear-rigid Kirchhoff-Love shells. In this work we explore three-director Cosserat (micropolar) shells which introduce additional rotational degrees of freedom. This microrotation field models transverse shearing and in-plane drilling rotations. We propose an incremental potential formulation of the Cosserat shell dynamics which allows for strong coupling with frictional contact and other physical systems. We evaluate a corresponding finite element discretization for non-planar shells using second-order elements which alleviates shear-locking and permits simulation of curved geometries. Our formulation and the discretization, in particular of the rotational degrees of freedom, is designed to integrate well with typical simulation approaches in physically-based animation. While the discretization of the rotations requires some care, we demonstrate that they do not pose significant numerical challenges in Newton's method. In our experiments we also show that the codimensional shell model is consistent with the respective three-dimensional model. We qualitatively compare our formulation with Kirchhoff-Love shells and demonstrate intriguing use cases for the additional modes of control over dynamic deformations offered by the Cosserat model such as directly prescribing rotations or angular velocities and influencing the shell's curvature.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generating Flight Summaries Conforming to Cinematographic Principles","authors":"Christophe Lino, Marie-Paule Cani","doi":"10.1111/cgf.15179","DOIUrl":"https://doi.org/10.1111/cgf.15179","url":null,"abstract":"<div>\u0000 \u0000 <p>We propose an automatic method for generating flight summaries of prescribed duration, given any planed 3D trajectory of a flying object. The challenge is to select relevant time-ellipses, while keeping and adequately framing the most interesting parts of the trajectory, and enforcing cinematographic rules between the selected shots. Our solution optimizes the visual quality of the output video both in terms of camera view and film editing choices, thanks to a new optimization technique, designed to jointly optimize the selection of the interesting parts of a flight, and the camera animation parameters over time. To our best knowledge, this solution is the first one to address camera control, film editing, and trajectory summarizing at once. Ablation studies demonstrate the visual quality of the flights summaries we generate compared to alternative methods.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust and Artefact-Free Deformable Contact with Smooth Surface Representations","authors":"Y. Du, Y. Li, S. Coros, B. Thomaszewski","doi":"10.1111/cgf.15187","DOIUrl":"https://doi.org/10.1111/cgf.15187","url":null,"abstract":"<div>\u0000 <p>Modeling contact between deformable solids is a fundamental problem in computer animation, mechanical design, and robotics. Existing methods based on C<sup>0</sup>-discretizations—piece-wise linear or polynomial surfaces—suffer from discontinuities and irregularities in tangential contact forces, which can significantly affect simulation outcomes and even prevent convergence. In this work, we show that these limitations can be overcome with a smooth surface representation based on Implicit Moving Least Squares (IMLS). In particular, we propose a self collision detection scheme tailored to IMLS surfaces that enables robust and efficient handling of challenging self contacts. Through a series of test cases, we show that our approach offers advantages over existing methods in terms of accuracy and robustness for both forward and inverse problems.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Hu, Zihao Zhang, Yongjing Ye, Yiwen Xu, Shihong Xia
{"title":"Diffusion-based Human Motion Style Transfer with Semantic Guidance","authors":"Lei Hu, Zihao Zhang, Yongjing Ye, Yiwen Xu, Shihong Xia","doi":"10.1111/cgf.15169","DOIUrl":"https://doi.org/10.1111/cgf.15169","url":null,"abstract":"<p>3D Human motion style transfer is a fundamental problem in computer graphic and animation processing. Existing AdaIN-based methods necessitate datasets with balanced style distribution and content/style labels to train the clustered latent space. However, we may encounter a single unseen style example in practical scenarios, but not in sufficient quantity to constitute a style cluster for AdaIN-based methods. Therefore, in this paper, we propose a novel two-stage framework for few-shot style transfer learning based on the diffusion model. Specifically, in the first stage, we pre-train a diffusion-based text-to-motion model as a generative prior so that it can cope with various content motion inputs. In the second stage, based on the single style example, we fine-tune the pre-trained diffusion model in a few-shot manner to make it capable of style transfer. The key idea is regarding the reverse process of diffusion as a motion-style translation process since the motion styles can be viewed as special motion variations. During the fine-tuning for style transfer, a simple yet effective semantic-guided style transfer loss coordinated with style example reconstruction loss is introduced to supervise the style transfer in CLIP semantic space. The qualitative and quantitative evaluations demonstrate that our method can achieve state-of-the-art performance and has practical applications. The source code is available at https://github.com/hlcdyy/diffusion-based-motion-style-transfer.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Zhang, S. Long, Y. Xu, X. Wang, C. Yao, J. Kosinka, S. Frey, A. Telea, X. Ban
{"title":"Multiphase Viscoelastic Non-Newtonian Fluid Simulation","authors":"Y. Zhang, S. Long, Y. Xu, X. Wang, C. Yao, J. Kosinka, S. Frey, A. Telea, X. Ban","doi":"10.1111/cgf.15180","DOIUrl":"https://doi.org/10.1111/cgf.15180","url":null,"abstract":"<p>We propose an SPH-based method for simulating viscoelastic non-Newtonian fluids within a multiphase framework. For this, we use mixture models to handle component transport and conformation tensor methods to handle the fluid's viscoelastic stresses. In addition, we consider a bonding effects network to handle the impact of microscopic chemical bonds on phase transport. Our method supports the simulation of both steady-state viscoelastic fluids and discontinuous shear behavior. Compared to previous work on single-phase viscous non-Newtonian fluids, our method can capture more complex behavior, including material mixing processes that generate non-Newtonian fluids. We adopt a uniform set of variables to describe shear thinning, shear thickening, and ordinary Newtonian fluids while automatically calculating local rheology in inhomogeneous solutions. In addition, our method can simulate large viscosity ranges under explicit integration schemes, which typically requires implicit viscosity solvers under earlier single-phase frameworks.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning to Play Guitar with Robotic Hands","authors":"Chaoyi Luo, Pengbin Tang, Yuqi Ma, Dongjin Huang","doi":"10.1111/cgf.15166","DOIUrl":"https://doi.org/10.1111/cgf.15166","url":null,"abstract":"<p>Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to replicate specific guitar playing segments, which restricts the range of performances and demands intricate post-processing. In this paper, we introduce a novel reinforcement learning model that can play the guitar using robotic hands, without the need for motion capture datasets, from input tablatures. To achieve this, we divide the simulation task for playing guitar into three stages. (a): for an input tablature, we first generate corresponding fingerings that align with human habits. (b): based on the generated fingerings as the guidance, we train a neural network for controlling the fingers of the left hand using deep reinforcement learning, and (c): we generate plucking movements for the right hand based on inverse kinematics according to the tablature. We evaluate our method by employing precision, recall, and F1 scores as quantitative metrics to thoroughly assess its performance in playing musical notes. In addition, we conduct qualitative analysis through user studies to evaluate the visual and auditory effects of guitar performance. The results demonstrate that our model excels in playing most moderately difficult and easier musical pieces, accurately playing nearly all notes.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SketchAnim: Real-time sketch animation transfer from videos","authors":"Gaurav Rai, Shreyas Gupta, Ojaswa Sharma","doi":"10.1111/cgf.15176","DOIUrl":"https://doi.org/10.1111/cgf.15176","url":null,"abstract":"<p>Animation of hand-drawn sketches is an adorable art. It allows the animator to generate animations with expressive freedom and requires significant expertise. In this work, we introduce a novel sketch animation framework designed to address inherent challenges, such as motion extraction, motion transfer, and occlusion. The framework takes an exemplar video input featuring a moving object and utilizes a robust motion transfer technique to animate the input sketch. We show comparative evaluations that demonstrate the superior performance of our method over existing sketch animation techniques. Notably, our approach exhibits a higher level of user accessibility in contrast to conventional sketch-based animation systems, positioning it as a promising contributor to the field of sketch animation. https://graphics-research-group.github.io/SketchAnim/</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Creating a 3D Mesh in A-pose from a Single Image for Character Rigging","authors":"Seunghwan Lee, C. Karen Liu","doi":"10.1111/cgf.15177","DOIUrl":"https://doi.org/10.1111/cgf.15177","url":null,"abstract":"<p>Learning-based methods for 3D content generation have shown great potential to create 3D characters from text prompts, videos, and images. However, current methods primarily focus on generating static 3D meshes, overlooking the crucial aspect of creating an animatable 3D meshes. Directly using 3D meshes generated by existing methods to create underlying skeletons for animation presents many challenges because the generated mesh might exhibit geometry artifacts or assume arbitrary poses that complicate the subsequent rigging process. This work proposes a new framework for generating a 3D animatable mesh from a single 2D image depicting the character. We do so by enforcing the generated 3D mesh to assume an A-pose, which can mitigate the geometry artifacts and facilitate the use of existing automatic rigging methods. Our approach aims to leverage the generative power of existing models across modalities without the need for new data or large-scale training. We evaluate the effectiveness of our framework with qualitative results, as well as ablation studies and quantitative comparisons with existing 3D mesh generation models.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Durst, F. Xie, V. Sarukkai, B. Shacklett, I. Frosio, C. Tessler, J. Kim, C. Taylor, G. Bernstein, S. Choudhury, P. Hanrahan, K. Fatahalian
{"title":"Learning to Move Like Professional Counter-Strike Players","authors":"D. Durst, F. Xie, V. Sarukkai, B. Shacklett, I. Frosio, C. Tessler, J. Kim, C. Taylor, G. Bernstein, S. Choudhury, P. Hanrahan, K. Fatahalian","doi":"10.1111/cgf.15173","DOIUrl":"https://doi.org/10.1111/cgf.15173","url":null,"abstract":"<p>In multiplayer, first-person shooter games like Counter-Strike: Global Offensive (CS:GO), coordinated movement is a critical component of high-level strategic play. However, the complexity of team coordination and the variety of conditions present in popular game maps make it impractical to author hand-crafted movement policies for every scenario. We show that it is possible to take a data-driven approach to creating human-like movement controllers for CS:GO. We curate a team movement dataset comprising 123 hours of professional game play traces, and use this dataset to train a transformer-based movement model that generates human-like team movement for all players in a “Retakes” round of the game. Importantly, the movement prediction model is efficient. Performing inference for all players takes less than 0.5 ms per game step (amortized cost) on a single CPU core, making it plausible for use in commercial games today. Human evaluators assess that our model behaves more like humans than both commercially-available bots and procedural movement controllers scripted by experts (16% to 59% higher by TrueSkill rating of “human-like”). Using experiments involving in-game bot vs. bot self-play, we demonstrate that our model performs simple forms of teamwork, makes fewer common movement mistakes, and yields movement distributions, player lifetimes, and kill locations similar to those observed in professional CS:GO match play.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}