{"title":"A High-Scalability Graph Modification System for Large-Scale Networks","authors":"Shaobin Xu, Minghui Sun, Jun Qin","doi":"10.1111/cgf.15191","DOIUrl":"10.1111/cgf.15191","url":null,"abstract":"<p>Modifying network results is the most intuitive way to inject domain knowledge into network detection algorithms to improve their performance. While advances in computation scalability have made detecting large-scale networks possible, the human ability to modify such networks has not scaled accordingly, resulting in a huge ‘interaction gap’. Most existing works only support navigating and modifying edges one by one in a graph visualization, which causes a significant interaction burden when faced with large-scale networks. In this work, we propose a novel graph pattern mining algorithm based on the minimum description length (MDL) principle to partition and summarize multi-feature and isomorphic sub-graph matches. The mined sub-graph patterns can be utilized as mediums for modifying large-scale networks. Combining two traditional approaches, we introduce a new coarse-middle-fine graph modification paradigm (<i>i.e</i>. query graph-based modification <span></span><math></math> sub-graph pattern-based modification <span></span><math></math> raw edge-based modification). We further present a graph modification system that supports the graph modification paradigm for improving the scalability of modifying detected large-scale networks. We evaluate the performance of our graph pattern mining algorithm through an experimental study, demonstrate the usefulness of our system through a case study, and illustrate the efficiency of our graph modification paradigm through a user study.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SMFS-GAN: Style-Guided Multi-class Freehand Sketch-to-Image Synthesis","authors":"Zhenwei Cheng, Lei Wu, Xiang Li, Xiangxu Meng","doi":"10.1111/cgf.15190","DOIUrl":"10.1111/cgf.15190","url":null,"abstract":"<p>Freehand sketch-to-image (S2I) is a challenging task due to the individualized lines and the random shape of freehand sketches. The multi-class freehand sketch-to-image synthesis task, in turn, presents new challenges for this research area. This task requires not only the consideration of the problems posed by freehand sketches but also the analysis of multi-class domain differences in the conditions of a single model. However, existing methods often have difficulty learning domain differences between multiple classes, and cannot generate controllable and appropriate textures while maintaining shape stability. In this paper, we propose a style-guided multi-class freehand sketch-to-image synthesis model, SMFS-GAN, which can be trained using only unpaired data. To this end, we introduce a contrast-based style encoder that optimizes the network's perception of domain disparities by explicitly modelling the differences between classes and thus extracting style information across domains. Further, to optimize the fine-grained texture of the generated results and the shape consistency with freehand sketches, we propose a local texture refinement discriminator and a Shape Constraint Module, respectively. In addition, to address the imbalance of data classes in the QMUL-Sketch dataset, we add 6K images by drawing manually and obtain QMUL-Sketch+ dataset. Extensive experiments on SketchyCOCO Object dataset, QMUL-Sketch+ dataset and Pseudosketches dataset demonstrate the effectiveness as well as the superiority of our proposed method.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anisotropy and Cross Fields","authors":"L. Simons, N. Amenta","doi":"10.1111/cgf.15132","DOIUrl":"10.1111/cgf.15132","url":null,"abstract":"<p>We consider a cross field, possibly with singular points of valence 3 or 5, in which all streamlines are finite, and either end on the boundary or form cycles. We show that we can always assign lengths to the two cross field directions to produce an anisotropic orthogonal frame field. There is a one-dimensional family of such length functions, and we optimize within this family so that the two lengths are everywhere as similar as possible. This gives a numerical bound on the minimal anisotropy of any quad mesh exactly following the input cross field. We also show how to remove some limit cycles.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integer-Sheet-Pump Quantization for Hexahedral Meshing","authors":"H. Brückler, D. Bommes, M. Campen","doi":"10.1111/cgf.15131","DOIUrl":"10.1111/cgf.15131","url":null,"abstract":"<div>\u0000 \u0000 <p>Several state-of-the-art algorithms for semi-structured hexahedral meshing involve a so called <i>quantization</i> step to decide on the integer DoFs of the meshing problem, corresponding to the number of hexahedral elements to embed into certain regions of the domain. Existing reliable methods for quantization are based on solving a sequence of <i>integer quadratic programs</i> (IQP). Solving these in a timely and predictable manner with general-purpose solvers is a challenge, even more so in the open-source field. We present here an alternative robust and efficient quantization scheme that is instead based on solving a series of continuous <i>linear programs</i> (LP), for which solver availability and efficiency are not an issue. In our formulation, such LPs are used to determine where inflation or deflation of virtual hexahedral sheets are favorable. We compare our method to two implementations of the former IQP formulation (using a commercial and an open-source MIP solver, respectively), finding that (a) the solutions found by our method are near-optimal or optimal in most cases, (b) these solutions are found within a much more predictable time frame, and (c) the state of the art run time is outperformed, in the case of using the open-source solver by orders of magnitude.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. C. Pareja-Corcho, M. Bartoň, A. Pedrera-Busselo, D. Mejia-Parra, A. Moreno, J. Posada
{"title":"On shape design and optimization of gerotor pumps","authors":"J. C. Pareja-Corcho, M. Bartoň, A. Pedrera-Busselo, D. Mejia-Parra, A. Moreno, J. Posada","doi":"10.1111/cgf.15140","DOIUrl":"10.1111/cgf.15140","url":null,"abstract":"<p>A gerotor pump is a two-piece mechanism where two rotational components, interior and exterior, engage each other via a rotational motion to transfer a fluid in a direction parallel to their rotational axes. A natural question arises on what shape of the gerotor is the optimal one in the sense of maximum fluid being pumped for a unit of time, given the constraint of a fixed material needed to manufacture the pump. As there is no closed-formula to answer this question, we propose a new algorithm to design and optimize the shape of gerotor pumps to be as efficient as possible. The proposed algorithm is based on a fast construction of the envelope of the interior component and subsequent optimization. We demonstrate our algorithm on a benchmark gerotor and show that the optimized solution increases the estimated flowrate by 16%. We also use our algorithm to study the effect of the number of teeth on the cavity area of a gerotor.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Koray Akalin, Ugo Finnendahl, Olga Sorkine-Hornung, Marc Alexa
{"title":"Mesh Parameterization Meets Intrinsic Triangulations","authors":"Koray Akalin, Ugo Finnendahl, Olga Sorkine-Hornung, Marc Alexa","doi":"10.1111/cgf.15134","DOIUrl":"10.1111/cgf.15134","url":null,"abstract":"<div>\u0000 \u0000 <p>A parameterization of a triangle mesh is a realization in the plane so that all triangles have positive signed area. Triangle mesh parameterizations are commonly computed by minimizing a distortion energy, measuring the distortions of the triangles as they are mapped into the parameter domain. It is assumed that the triangulation is fixed and the triangles are mapped affinely. We consider a more general setup and additionally optimize among the intrinsic triangulations of the piecewise linear input geometry. This means the distortion energy is computed for the same geometry, yet the space of possible parameterizations is enlarged. For minimizing the distortion energy, we suggest alternating between varying the parameter locations of the vertices and intrinsic flipping. We show that this process improves the mapping for different distortion energies at moderate additional cost. We also find intrinsic triangulations that are better starting points for the optimization of positions, offering a compromise between the full optimization approach and exploiting the additional freedom of intrinsic triangulations.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Winding Number Features for Vector Sketch Colorization","authors":"Daniel Scrivener, Ellis Coldren, Edward Chien","doi":"10.1111/cgf.15141","DOIUrl":"10.1111/cgf.15141","url":null,"abstract":"<p>Vector sketch software (e.g. Adobe Illustrator, Inkscape) and touch-interactive technologies have long aided artists in the creation of resolution-independent digital drawings that mimic the unconstrained nature of freehand sketches. However, artist intent behind stroke topology is often ambiguous, complicating traditional segmentation tasks such as coloring. For inspiration, we turn to the winding number, a classic geometric property of interest for binary segmentation in the presence of boundary data. Its direct application for multi-region segmentation poses two main challenges: (1) strokes may not be consistently oriented to best identify perceptually salient regions; (2) for interior strokes there is no “correct” orientation, as either choice better distinguishes one of two neighboring regions. Thus, we form a harmonic feature space from multiple winding number fields and perform segmentation via Voronoi/power diagrams in this domain. Our perspective allows both for automatic fill region detection and for a semi-automatic framework that naturally incorporates user hints and interactive sculpting of results, unlike competing automatic methods. Our method is agnostic to curve orientation and gracefully handles varying gap sizes in the sketch boundary, outperforming state-of-the-art colorization methods on these “gappy” inputs. Moreover, it inherits the ability of winding numbers to specify “fuzzy” boundaries, leading to simple strategies for color diffusion and single-parameter-driven growing and shrinking of regions.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distance-Based Smoothing of Curves on Surface Meshes","authors":"M. Pawellek, C. Rössl, K. Lawonn","doi":"10.1111/cgf.15135","DOIUrl":"10.1111/cgf.15135","url":null,"abstract":"<div>\u0000 \u0000 <p>The smoothing of surface curves is an essential tool in mesh processing, important to applications that require segmenting and cutting surfaces such as surgical planning. Surface curves are typically designed by professionals to match certain surface features. For this reason, the smoothed curves should be close to the original and easily adjustable by the user in interactive tools. Previous methods achieve this desired behavior, e.g., by utilizing energy-minimizing splines or generalizations of Bézier splines, which require a significant number of control points and may not provide interactive frame rates or numerical stability. This paper presents a new algorithm for robust smoothing of discrete surface curves on triangular surface meshes. By using a scalar penalty potential as the fourth coordinate, the given surface mesh is embedded into the 4D Euclidean space. Our method is based on finding geodesics in this lifted surface, which are then projected back onto the original 3D surface. The benefits of this approach include guaranteed convergence and good approximation of the initial curve. We propose a family of penalty potentials with one single parameter for adjusting the trade-off between smoothness and similarity. The implementation of our method is straightforward as we rely on existing methods for computing geodesics and penalty fields. We evaluate our implementation and confirm its robustness and efficiency.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiquan Wang, Inés García-Redondo, Pierre Faugère, Gregory Henselman-Petrusek, Anthea Monod
{"title":"Stability for Inference with Persistent Homology Rank Functions","authors":"Qiquan Wang, Inés García-Redondo, Pierre Faugère, Gregory Henselman-Petrusek, Anthea Monod","doi":"10.1111/cgf.15142","DOIUrl":"10.1111/cgf.15142","url":null,"abstract":"<div>\u0000 \u0000 <p>Persistent homology barcodes and diagrams are a cornerstone of topological data analysis that capture the “shape” of a wide range of complex data structures, such as point clouds, networks, and functions. However, their use in statistical settings is challenging due to their complex geometric structure. In this paper, we revisit the persistent homology rank function, which is mathematically equivalent to a barcode and persistence diagram, as a tool for statistics and machine learning. Rank functions, being functions, enable the direct application of the statistical theory of functional data analysis (FDA)—a domain of statistics adapted for data in the form of functions. A key challenge they present over barcodes in practice, however, is their lack of stability—a property that is crucial to validate their use as a faithful representation of the data and therefore a viable summary statistic. In this paper, we fill this gap by deriving two stability results for persistent homology rank functions under a suitable metric for FDA integration. We then study the performance of rank functions in functional inferential statistics and machine learning on real data applications, in both single and multiparameter persistent homology. We find that the use of persistent homology captured by rank functions offers a clear improvement over existing non-persistence-based approaches.</p>\u0000 </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aalok Gangopadhyay, Paras Gupta, Tarun Sharma, Prajwal Singh, Shanmuganathan Raman
{"title":"Search Me Knot, Render Me Knot: Embedding Search and Differentiable Rendering of Knots in 3D","authors":"Aalok Gangopadhyay, Paras Gupta, Tarun Sharma, Prajwal Singh, Shanmuganathan Raman","doi":"10.1111/cgf.15138","DOIUrl":"10.1111/cgf.15138","url":null,"abstract":"<p>We introduce the problem of knot-based inverse perceptual art. Given multiple target images and their corresponding viewing configurations, the objective is to find a 3D knot-based tubular structure whose appearance resembles the target images when viewed from the specified viewing configurations. To solve this problem, we first design a differentiable rendering algorithm for rendering tubular knots embedded in 3D for arbitrary perspective camera configurations. Utilizing this differentiable rendering algorithm, we search over the space of knot configurations to find the ideal knot embedding. We represent the knot embeddings via homeomorphisms of the desired template knot, where the weights of an invertible neural network parametrize the homeomorphisms. Our approach is fully differentiable, making it possible to find the ideal 3D tubular structure for the desired perceptual art using gradient-based optimization. We propose several loss functions that impose additional physical constraints, enforcing that the tube is free of self-intersection, lies within a predefined region in space, satisfies the physical bending limits of the tube material, and the material cost is within a specified budget. We demonstrate through results that our knot representation is highly expressive and gives impressive results even for challenging target images in both single-view and multiple-view constraints. Through extensive ablation study, we show that each proposed loss function effectively ensures physical realizability. We construct a real-world 3D-printed object to demonstrate the practical utility of our approach.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}