H. Shrestha, K. Cachel, M. Alkhathlan, E. Rundensteiner, L. Harrison
{"title":"FairSpace: An Interactive Visualization System for Constructing Fair Consensus from Many Rankings","authors":"H. Shrestha, K. Cachel, M. Alkhathlan, E. Rundensteiner, L. Harrison","doi":"10.1111/cgf.70132","DOIUrl":null,"url":null,"abstract":"<p>Decisions involving algorithmic rankings affect our lives in many ways, from product recommendations, receiving scholarships, to securing jobs. While tools have been developed for interactively constructing fair consensus rankings from a handful of rankings, addressing the more complex real-world scenario— where diverse opinions are represented by a larger collection of rankings— remains a challenge. In this paper, we address these challenges by reformulating the exploration of rankings as a dimension reduction problem in a system called FairSpace. FairSpace provides new views, including Fair Divergence View and Cluster Views, by juxtaposing fairness metrics of different local and alternative global consensus rankings to aid ranking analysis tasks. We illustrate the effectiveness of FairSpace through a series of use cases, demonstrating via interactive workflows that users are empowered to create local consensuses by grouping rankings similar in their fairness or utility properties, followed by hierarchically aggregating local consensuses into a global consensus through direct manipulation. We discuss how FairSpace opens the possibility for advances in dimension reduction visualization to benefit the research area of supporting fair decision-making in ranking based decision-making contexts.</p><p>Code, datasets and demo video available at: osf.io/d7cwk</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70132","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Decisions involving algorithmic rankings affect our lives in many ways, from product recommendations, receiving scholarships, to securing jobs. While tools have been developed for interactively constructing fair consensus rankings from a handful of rankings, addressing the more complex real-world scenario— where diverse opinions are represented by a larger collection of rankings— remains a challenge. In this paper, we address these challenges by reformulating the exploration of rankings as a dimension reduction problem in a system called FairSpace. FairSpace provides new views, including Fair Divergence View and Cluster Views, by juxtaposing fairness metrics of different local and alternative global consensus rankings to aid ranking analysis tasks. We illustrate the effectiveness of FairSpace through a series of use cases, demonstrating via interactive workflows that users are empowered to create local consensuses by grouping rankings similar in their fairness or utility properties, followed by hierarchically aggregating local consensuses into a global consensus through direct manipulation. We discuss how FairSpace opens the possibility for advances in dimension reduction visualization to benefit the research area of supporting fair decision-making in ranking based decision-making contexts.
Code, datasets and demo video available at: osf.io/d7cwk
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.