{"title":"非此即彼:气候科学传播的互动文章或视频","authors":"J. Poehls, M. Meuschke, N. Carvalhais, K. Lawonn","doi":"10.1111/cgf.70129","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Effective communication of climate science is critical as climate-related disasters become more frequent and severe. Translating complex information, such as uncertainties in climate model predictions, into formats accessible to diverse audiences is key to informed decision-making and public engagement. This study investigates how different teaching formats can enhance understanding of these uncertainties. This study compares two multimodal strategies: (1) a text-image format with interactive components and (2) an explainer video combining dynamic visuals with narration. Participants' immediate and delayed retention (one week) and engagement are assessed to determine which format offers greater saliency.</p>\n <p>Sample analysis (n = <i>622</i>) displayed equivalent retention by viewers between both formats. Metrics assessing interactivity found no correlation between interactivity and information retention. However, a stark contrast was observed in the time viewers spent engaging with each format. The video format was 29% more efficient with information taught over a period of time vs. the article. Additionally, retention on the video format worsened with age (P = <i>0.004</i>) while retention on the article format improved with education (P = <i>0.038</i>). These results align with previous findings in literature.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70129","citationCount":"0","resultStr":"{\"title\":\"Either Or: Interactive Articles or Videos for Climate Science Communication\",\"authors\":\"J. Poehls, M. Meuschke, N. Carvalhais, K. Lawonn\",\"doi\":\"10.1111/cgf.70129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Effective communication of climate science is critical as climate-related disasters become more frequent and severe. Translating complex information, such as uncertainties in climate model predictions, into formats accessible to diverse audiences is key to informed decision-making and public engagement. This study investigates how different teaching formats can enhance understanding of these uncertainties. This study compares two multimodal strategies: (1) a text-image format with interactive components and (2) an explainer video combining dynamic visuals with narration. Participants' immediate and delayed retention (one week) and engagement are assessed to determine which format offers greater saliency.</p>\\n <p>Sample analysis (n = <i>622</i>) displayed equivalent retention by viewers between both formats. Metrics assessing interactivity found no correlation between interactivity and information retention. However, a stark contrast was observed in the time viewers spent engaging with each format. The video format was 29% more efficient with information taught over a period of time vs. the article. Additionally, retention on the video format worsened with age (P = <i>0.004</i>) while retention on the article format improved with education (P = <i>0.038</i>). These results align with previous findings in literature.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70129\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70129\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70129","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Either Or: Interactive Articles or Videos for Climate Science Communication
Effective communication of climate science is critical as climate-related disasters become more frequent and severe. Translating complex information, such as uncertainties in climate model predictions, into formats accessible to diverse audiences is key to informed decision-making and public engagement. This study investigates how different teaching formats can enhance understanding of these uncertainties. This study compares two multimodal strategies: (1) a text-image format with interactive components and (2) an explainer video combining dynamic visuals with narration. Participants' immediate and delayed retention (one week) and engagement are assessed to determine which format offers greater saliency.
Sample analysis (n = 622) displayed equivalent retention by viewers between both formats. Metrics assessing interactivity found no correlation between interactivity and information retention. However, a stark contrast was observed in the time viewers spent engaging with each format. The video format was 29% more efficient with information taught over a period of time vs. the article. Additionally, retention on the video format worsened with age (P = 0.004) while retention on the article format improved with education (P = 0.038). These results align with previous findings in literature.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.