{"title":"3D图形绘图的视点优化","authors":"S. van Wageningen, T. Mchedlidze, A. Telea","doi":"10.1111/cgf.70127","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Graph drawings using a node-link metaphor and straight edges are widely used to represent and understand relational data. While such drawings are typically created in 2D, 3D representations have also gained popularity. When exploring 3D drawings, finding viewpoints that help understanding the graph's structure is crucial. Finding good viewpoints also allows using the 3D drawings to generate good 2D graph drawings. In this work, we tackle the problem of automatically finding high-quality viewpoints for 3D graph drawings. We propose and evaluate strategies based on sampling, gradient descent, and evolutionary-inspired meta-heuristics. Our results show that most strategies quickly converge to high-quality viewpoints within a few dozen function evaluations, with meta-heuristic approaches showing robust performance regardless of the quality metric.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70127","citationCount":"0","resultStr":"{\"title\":\"Viewpoint Optimization for 3D Graph Drawings\",\"authors\":\"S. van Wageningen, T. Mchedlidze, A. Telea\",\"doi\":\"10.1111/cgf.70127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Graph drawings using a node-link metaphor and straight edges are widely used to represent and understand relational data. While such drawings are typically created in 2D, 3D representations have also gained popularity. When exploring 3D drawings, finding viewpoints that help understanding the graph's structure is crucial. Finding good viewpoints also allows using the 3D drawings to generate good 2D graph drawings. In this work, we tackle the problem of automatically finding high-quality viewpoints for 3D graph drawings. We propose and evaluate strategies based on sampling, gradient descent, and evolutionary-inspired meta-heuristics. Our results show that most strategies quickly converge to high-quality viewpoints within a few dozen function evaluations, with meta-heuristic approaches showing robust performance regardless of the quality metric.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70127\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70127\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70127","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Graph drawings using a node-link metaphor and straight edges are widely used to represent and understand relational data. While such drawings are typically created in 2D, 3D representations have also gained popularity. When exploring 3D drawings, finding viewpoints that help understanding the graph's structure is crucial. Finding good viewpoints also allows using the 3D drawings to generate good 2D graph drawings. In this work, we tackle the problem of automatically finding high-quality viewpoints for 3D graph drawings. We propose and evaluate strategies based on sampling, gradient descent, and evolutionary-inspired meta-heuristics. Our results show that most strategies quickly converge to high-quality viewpoints within a few dozen function evaluations, with meta-heuristic approaches showing robust performance regardless of the quality metric.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.