Rita Sevastjanova, Robin Gerling, Thilo Spinner, Mennatallah El-Assady
{"title":"LayerFlow: Layer-wise Exploration of LLM Embeddings using Uncertainty-aware Interlinked Projections","authors":"Rita Sevastjanova, Robin Gerling, Thilo Spinner, Mennatallah El-Assady","doi":"10.1111/cgf.70123","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) represent words through contextual word embeddings encoding different language properties like semantics and syntax. Understanding these properties is crucial, especially for researchers investigating language model capabilities, employing embeddings for tasks related to text similarity, or evaluating the reasons behind token importance as measured through attribution methods. Applications for embedding exploration frequently involve dimensionality reduction techniques, which reduce high-dimensional vectors to two dimensions used as coordinates in a scatterplot. This data transformation step introduces uncertainty that can be propagated to the visual representation and influence users' interpretation of the data. To communicate such uncertainties, we present <b>LayerFlow</b> – a visual analytics workspace that displays embeddings in an interlinked projection design and communicates the transformation, representation, and interpretation uncertainty. In particular, to hint at potential data distortions and uncertainties, the workspace includes several visual components, such as convex hulls showing 2D and HD clusters, data point pairwise distances, cluster summaries, and projection quality metrics. We show the usability of the presented workspace through replication and expert case studies that highlight the need to communicate uncertainty through multiple visual components and different data perspectives.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70123","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) represent words through contextual word embeddings encoding different language properties like semantics and syntax. Understanding these properties is crucial, especially for researchers investigating language model capabilities, employing embeddings for tasks related to text similarity, or evaluating the reasons behind token importance as measured through attribution methods. Applications for embedding exploration frequently involve dimensionality reduction techniques, which reduce high-dimensional vectors to two dimensions used as coordinates in a scatterplot. This data transformation step introduces uncertainty that can be propagated to the visual representation and influence users' interpretation of the data. To communicate such uncertainties, we present LayerFlow – a visual analytics workspace that displays embeddings in an interlinked projection design and communicates the transformation, representation, and interpretation uncertainty. In particular, to hint at potential data distortions and uncertainties, the workspace includes several visual components, such as convex hulls showing 2D and HD clusters, data point pairwise distances, cluster summaries, and projection quality metrics. We show the usability of the presented workspace through replication and expert case studies that highlight the need to communicate uncertainty through multiple visual components and different data perspectives.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.