Haiyang Hou, Pei Sun, Yi Qiao, Xiaotian Xu, Xin Zhang, Tao Yang
{"title":"Bethe ansatz solutions of the 1D extended Hubbard-model","authors":"Haiyang Hou, Pei Sun, Yi Qiao, Xiaotian Xu, Xin Zhang, Tao Yang","doi":"10.1088/1572-9494/ad2c77","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2c77","url":null,"abstract":"We construct an integrable 1D extended Hubbard model within the framework of the quantum inverse scattering method. With the help of the nested algebraic Bethe ansatz method, the eigenvalue Hamiltonian problem is solved by a set of Bethe ansatz equations, whose solutions are supposed to give the correct energy spectrum.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"29 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor–Melvin-Lambda space-time","authors":"Faizuddin Ahmed, Abdelmalek Bouzenada","doi":"10.1088/1572-9494/ad2e88","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2e88","url":null,"abstract":"In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter <italic toggle=\"yes\">α</italic> of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) <inline-formula>\u0000<tex-math>\u0000<?CDATA $f(chi )=tfrac{({{rm{e}}}^{beta ,chi }-1)}{beta ,chi }$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi>f</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">e</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2e88ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, <italic toggle=\"yes\">h</italic>(<italic toggle=\"yes\">χ</italic>) = 1 and (ii) <italic toggle=\"yes\">f</italic>(<italic toggle=\"yes\">χ</italic>) = 1, <inline-formula>\u0000<tex-math>\u0000<?CDATA $h(chi )=1+tfrac{beta ,chi }{2}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi>h</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2e88ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. Here <inline-formula>\u0000<tex-math>\u0000<?CDATA $0lt left(chi =tfrac{| E| }{{E}_{p}}right)leqslant 1$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi>χ</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mo stretchy=\"false\">∣</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy=\"false\">∣</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2e88ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> with <italic toggle=\"yes\">E</italic> representing the particle’s energy, <ital","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"15 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissociation cross sections of ψ(3770), ψ(4040), ψ(4160), and ψ(4415) mesons with nucleons","authors":"Ruo-Qing Ding, Xiao-Ming Xu, H J Weber","doi":"10.1088/1572-9494/ad2ce1","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2ce1","url":null,"abstract":"We study the dissociation of <italic toggle=\"yes\">ψ</italic>(3770), <italic toggle=\"yes\">ψ</italic>(4040), <italic toggle=\"yes\">ψ</italic>(4160), and <italic toggle=\"yes\">ψ</italic>(4415) mesons in collision with nucleons, which takes place in high-energy proton-nucleus collisions. The quark interchange between a nucleon and a <inline-formula>\u0000<tex-math>\u0000<?CDATA $cbar{c}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi>c</mml:mi><mml:mover accent=\"true\"><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2ce1ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> meson leads to the dissociation of the <inline-formula>\u0000<tex-math>\u0000<?CDATA $cbar{c}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi>c</mml:mi><mml:mover accent=\"true\"><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2ce1ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> meson. We consider the reactions: <inline-formula>\u0000<tex-math>\u0000<?CDATA ${pR}to {{rm{Lambda }}}_{c}^{+}{bar{D}}^{0}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"italic\">pR</mml:mi><mml:mo>→</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant=\"normal\">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2ce1ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, <inline-formula>\u0000<tex-math>\u0000<?CDATA ${pR}to {{rm{Lambda }}}_{c}^{+}{bar{D}}^{* 0}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"italic\">pR</mml:mi><mml:mo>→</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant=\"normal\">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2ce1ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, <inline-formula>\u0000<tex-math>\u0000<?CDATA ${pR}to {{rm{Sigma }}}_{c}^{++}{D}^{-}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"italic\">pR</mml:mi><mml:mo>→</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant=\"normal\">Σ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>++</mml:mo></mml:mrow></mml:msubsup><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msup></mml:math>\u0000<inline-graphic xlink:href=\"ctpad2ce1ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, <inline-formula>\u0000<tex-math>\u0000","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"22 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rogue waves for the (2+1)-dimensional Myrzakulov–Lakshmanan-IV equation on a periodic background","authors":"Xiao-Hui Wang, Zhaqilao","doi":"10.1088/1572-9494/ad2c78","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2c78","url":null,"abstract":"In this paper, the rogue wave solutions of the (2+1)-dimensional Myrzakulov–Lakshmanan (ML)-IV equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation (DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained. The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"23 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Planar matrices and arrays of Feynman diagrams: poles for higher k","authors":"Alfredo Guevara, Yong Zhang","doi":"10.1088/1572-9494/ad1095","DOIUrl":"https://doi.org/10.1088/1572-9494/ad1095","url":null,"abstract":"Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes <inline-formula>\u0000<tex-math>\u0000<?CDATA ${m}_{n}^{(k)}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\u0000<inline-graphic xlink:href=\"ctpad1095ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> for <italic toggle=\"yes\">k</italic> > 2. In this follow-up work, we investigate the poles of <inline-formula>\u0000<tex-math>\u0000<?CDATA ${m}_{n}^{(k)}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\u0000<inline-graphic xlink:href=\"ctpad1095ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> from the perspective of such arrays. For general <italic toggle=\"yes\">k</italic>, we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles, whose number is drastically less than the number of the full arrays. As an example, we first provide all the poles for the cases (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) = (3, 7), (3, 8), (3, 9), (3, 10), (4, 8) and (4, 9) in terms of their planar arrays of degenerate Feynman diagrams. We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases. Along the way, we implement hard and soft kinematical limits, which provide a map between the poles in kinematic space and their combinatoric arrays. We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) and (<italic toggle=\"yes\">n</italic> − <italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>). We also outline the relation to boundary maps of the hypersimplex Δ<sub>\u0000<italic toggle=\"yes\">k</italic>,<italic toggle=\"yes\">n</italic>\u0000</sub> and rays in the tropical Grassmannian <inline-formula>\u0000<tex-math>\u0000<?CDATA $mathrm{Tr}(k,n)$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi>Tr</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math>\u0000<inline-graphic xlink:href=\"ctpad1095ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wentao Qi, Alexandr I Zenchuk, Asutosh Kumar, Junde Wu
{"title":"Quantum algorithms for matrix operations and linear systems of equations","authors":"Wentao Qi, Alexandr I Zenchuk, Asutosh Kumar, Junde Wu","doi":"10.1088/1572-9494/ad2366","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2366","url":null,"abstract":"Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations. Using the ‘sender-receiver’ model, we propose quantum algorithms for matrix operations such as matrix-vector product, matrix-matrix product, the sum of two matrices, and the calculation of determinant and inverse matrix. We encode the matrix entries into the probability amplitudes of the pure initial states of senders. After applying proper unitary transformation to the complete quantum system, the desired result can be found in certain blocks of the receiver’s density matrix. These quantum protocols can be used as subroutines in other quantum schemes. Furthermore, we present an alternative quantum algorithm for solving linear systems of equations.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"83 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cold plasma-induced effects on electromagnetic wave scattering in waveguides: a mode-matching analysis","authors":"Shahana Rizvi, Muhammad Afzal","doi":"10.1088/1572-9494/ad23db","DOIUrl":"https://doi.org/10.1088/1572-9494/ad23db","url":null,"abstract":"This article presents advancements in an analytical mode-matching technique for studying electromagnetic wave propagation in a parallel-plate metallic rectangular waveguide. This technique involves projecting the solution onto basis functions and solving linear algebraic systems to determine scattering amplitudes. The accuracy of this method is validated via numerical assessments, which involve the reconstruction of matching conditions and conservation laws. The study highlights the impact of geometric and material variations on reflection and transmission phenomena in the waveguide.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"19 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Q-homotopy analysis method for time-fractional Newell–Whitehead equation and time-fractional generalized Hirota–Satsuma coupled KdV system","authors":"Di Liu, Qiongya Gu, Lizhen Wang","doi":"10.1088/1572-9494/ad2364","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2364","url":null,"abstract":"In this paper, two types of fractional nonlinear equations in Caputo sense, time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS), are investigated by means of the q-homotopy analysis method (q-HAM). The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions. Due to the presence of the auxiliary parameter <italic toggle=\"yes\">h</italic> in this method, just a few terms of the series solution are required in order to obtain better approximation. For the sake of visualization, the numerical results obtained in this paper are graphically displayed with the help of Maple.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"49 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The quasi-Gramian solution of a non-commutative extension of the higher-order nonlinear Schrödinger equation","authors":"H W A Riaz, J Lin","doi":"10.1088/1572-9494/ad244f","DOIUrl":"https://doi.org/10.1088/1572-9494/ad244f","url":null,"abstract":"The nonlinear Schrödinger (NLS) equation, which incorporates higher-order dispersive terms, is widely employed in the theoretical analysis of various physical phenomena. In this study, we explore the non-commutative extension of the higher-order NLS equation. We treat real or complex-valued functions, such as <italic toggle=\"yes\">g</italic>\u0000<sub>1</sub> = <italic toggle=\"yes\">g</italic>\u0000<sub>1</sub>(<italic toggle=\"yes\">x</italic>, <italic toggle=\"yes\">t</italic>) and <italic toggle=\"yes\">g</italic>\u0000<sub>2</sub> = <italic toggle=\"yes\">g</italic>\u0000<sub>2</sub>(<italic toggle=\"yes\">x</italic>, <italic toggle=\"yes\">t</italic>) as non-commutative, and employ the Lax pair associated with the evolution equation, as in the commutation case. We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation. The soliton solutions are presented explicitly within the framework of quasideterminants. To visually understand the dynamics and solutions in the given example, we also provide simulations illustrating the associated profiles. Moreover, the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"4 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}