Tighter sum uncertainty relations via (α, β, γ) weighted Wigner–Yanase–Dyson skew information

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Cong Xu, Zhaoqi Wu, Shao-Ming Fei
{"title":"Tighter sum uncertainty relations via (α, β, γ) weighted Wigner–Yanase–Dyson skew information","authors":"Cong Xu, Zhaoqi Wu, Shao-Ming Fei","doi":"10.1088/1572-9494/ad216b","DOIUrl":null,"url":null,"abstract":"We establish tighter uncertainty relations for arbitrary finite observables via (<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) weighted Wigner–Yanase–Dyson ((<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) WWYD) skew information. The results are also applicable to the (<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">γ</italic>) weighted Wigner–Yanase–Dyson ((<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">γ</italic>) WWYD) skew information and the weighted Wigner–Yanase–Dyson (WWYD) skew information. We also present tighter lower bounds for quantum channels and unitary channels via (<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) modified weighted Wigner–Yanase–Dyson ((<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) MWWYD) skew information. Detailed examples are provided to illustrate the tightness of our uncertainty relations.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad216b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We establish tighter uncertainty relations for arbitrary finite observables via (α, β, γ) weighted Wigner–Yanase–Dyson ((α, β, γ) WWYD) skew information. The results are also applicable to the (α, γ) weighted Wigner–Yanase–Dyson ((α, γ) WWYD) skew information and the weighted Wigner–Yanase–Dyson (WWYD) skew information. We also present tighter lower bounds for quantum channels and unitary channels via (α, β, γ) modified weighted Wigner–Yanase–Dyson ((α, β, γ) MWWYD) skew information. Detailed examples are provided to illustrate the tightness of our uncertainty relations.
通过 (α, β, γ) 加权 Wigner-Yanase-Dyson 倾斜信息实现更紧密的总和不确定性关系
我们通过 (α, β, γ) 加权维格纳-扬纳-戴森((α, β, γ) WWYD)倾斜信息,为任意有限观测变量建立了更严格的不确定性关系。这些结果也适用于 (α, γ) 加权维格纳-雅纳斯-戴森((α, γ) WWYD)偏斜信息和加权维格纳-雅纳斯-戴森(WWYD)偏斜信息。我们还通过 (α, β, γ) 修正的加权维格纳-雅纳斯-戴森((α, β, γ) MWWYD)偏斜信息,提出了量子信道和单元信道的更严格下界。我们提供了详细的例子来说明我们的不确定性关系的严密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信